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Abstract  

The Water Framework Directive requires member states to determine thresholds for a range of supporting 
chemical quality elements that will support good ecological status. This is a fundamental step in maintaining 
natural biodiversity as well as ensuring ecosystem service provision. All countries have defined thresholds, which 
have been used to report status in river basin planning cycles. The original intention of the work was to determine 
from empirical analysis a likely range of boundary values using pan-European data, which could be used to help 
inform any revision of current national boundary values. However, the analysis revealed relatively high levels of 
uncertainty, emphasising the challenge in establishing these boundary values. This highlighted the need for a 
more robust method. Binary logistic regression presented advantages over other methods, especially for complex 
data. However, a probability value must be seleted objectively to derive the nutrient threshold. This can be 
achieved by comparing the proportions of matching and mismatching status classifications of nutrients and a 
BQE using a confusion matrix. The method is applied to selected supporting elements for rivers and lakes. 
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1 Introduction 

The Water Framework Directive requires member states to determine thresholds for a range of supporting 
chemical quality elements (SEs) that will support good ecological status (GES). All countries have defined 
thresholds, which have been used to report status for the last two river basin planning cycles. Unlike the methods 
used to assess biological status these thresholds are not required to be formally compared through an 
intercalibration and a relatively wide range of values are currently in use (Kelly et al. 2022). These values 
compiled by Kelly et al. (2022) were used in this report and don’t incorporate any more recent changes at MS 
level. The original intention of the work was to determine from empirical analysis a likely range of boundary 
values for river total phosphorus, using pan-European data, that could be used to help inform any revision of 
current national boundary values. However, the analysis revealed relatively high levels of uncertainty, 
emphasising the challenge in establishing these boundary values and highlighting the need for a more objective 
consideration of the resulting misclassification rates when biotic and supporting element classes are compared. 
Thus in this report we present first a revised approach to setting boundary values and second, in separate 
documents, the results of its application to selected supporting elements for rivers, lakes and TRAC. 
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2 Approach to setting thresholds 

2.1 Key Points 

• We propose that a comparison of biota and SE classifications should be included in the process of 
establishing SE boundary values as this allows an assessment to be made of the relative rates of 
misclassification. In particular is the proportion of sites predicted to be in good or better biological status 
by the proposed SE boundary value, but that actually had a biota class that was moderate or worse, 
appropriate given the need for boundary values to be sufficiently precautionary to achieve WFD goals? 

• While this step should be carried out following any modelling approach, we also suggest that using a 
binary logistic model is ideally suited to this approach. 

2.2 Background 

Previous guidance (Kelly et al. 2021) has outlined several statistical methods that can be used to determine the 
concentration of a supporting element that should ensure good ecological status. For example, a regression 
model between EQR and nutrient concentration enables a nutrient boundary to be determined by inverse 
prediction using the boundary of the EQR value. Once established the supporting element boundary is used to 
classify water bodies on the basis of observed concentrations of that element. Where water bodies are found to 
have nutrient concentrations lower than the boundary threshold they are assumed to be capable of supporting 
good status, where they are higher then remedial action is needed to reduce nutrients. This classification 
approach tends to forget the uncertainties associated with the boundary values used and inevitably there will be 
situations where the nutrient and biological classifications disagree. Provided we fit reliable models the 
comparative mis-classification rates should be low and the balance between false positive and negative rates 
will be similar. For example, “false positives” (i.e., chemistry indicates no enrichment when biology is challenged) 
might be catastrophic if the objective is conservation of rare taxa that are sensitive to enrichment. On the other 
hand, Phillips et al. (2019) demonstrated that interactions amongst stressors may complicate setting 
precautionary thresholds for nutrients and an approach that minimises “false negatives”, where biology is not 
impacted despite nutrients being higher than the threshold, at least ensures that only genuinely impacted sites 
are subject to regulation. Thus, the balance between false positives and negatives becomes an important 
consideration as boundary selection inevitably imposes either societal costs in achieving nutrient reduction or 
benefits of greater environmental protection. The need to consider the purpose to which thresholds will be put, as 
well as the properties of the relationship between biology and nutrients was stressed by (Kelly et al. 2021) 
However, this also raises questions about how the purpose can be expressed in objective manner that can inform 
threshold selection. Model uncertainty is clearly key to this, but given that the management objective is to 
determine boundaries for use in classification, we propose that a formal consideration of the proportions of true 
and false categorical predictions should be given a greater priority. 

2.3 Comparing classifications 

To fully understand the approach, we need to remind ourselves that in setting boundary values we are assuming 
that the range of concentration of the supporting element is different where the biology status is good in 
comparison to when it is not good. Taking rivers and total phosphorus (TP) concentration as an example Figure 
2.1 shows an example where there is a clear difference in the TP distributions. Despite this there is a significant 
overlap (shaded area) and clearly wherever we place the boundary some sites that are biologically good will have 
TP concentrations higher than the boundary and others that are not in good status biologically will have TP 
concentrations below the boundary. We refer to these sites as being mis-classified and ideally, we should aim to 
minimise these, more on this below. For now, we can consider two simplistic approaches. First a precautionary 
approach would be to select the lowest TP concentration recorded from sites that were not in good status. In our 
example taking the minimum is clearly not appropriate but using the lower 10th percentile might be an 
appropriate value (Figure 2.1 red line). A less precautionary approach would be to take the highest or more 
realistically the 90th percentile of TP found in sites classified as good or better (Figure 2.1 blue line). In this 
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example these values are relatively similar, but where the overlap of TP between the classes is greater (Figure 
2.2) the differences are greater. 

This raises question, should we select the lower or the higher thresholds? Alternatively, we could take the average 
of the values, the approach suggested in the current guidance by taking the average of the 25th and 75th 
quantiles (shown by the boxes in Figure 2.1 & Figure 2.2). Both are reasonable options, but it would be better to 
consider the implications more carefully. Which option provides the best overall comparative classification (least 
mis-classifications); what is the balance between the two types of mis- classification; are there more mis-
classifications where the biology is moderate or worse but TP predicts they should be good or better 
(consequence of a less precautionary boundary) than those where the biology is in good or better status but TP is 
predicting it should not be (consequence of a precautionary boundary)? 

It is challenging to provide objective advice, but in section 2.4 we introduce a method that quantifies mis-
classification rates and thus helps establish the consequences of setting a particular threshold concentration. The 
approach is used extensively in other areas (e.g. drug testing) and is focused on the comparison of the biota and 
supporting element classifications. 

Additionally, we emphasise the use of binary logistic models (section 2.5). These were included in the current 
guidance, but we now consider that they are the most useful modelling approach. Unlike linear modelling 
methods the model predicts for each concentration of the supporting element a probability of achieving good 
biological status. Thus, a decision is required to select this probability threshold which can be directly related to 
the relative proportions of positive and negative mis-classifications. Additionally, the model uses the biological 
class rather than the EQR, avoiding issues associated with different EQR class boundaries when combining data 
from several countries. 

 

Figure 2.1. Density distribution and box plots showing the range of total phosphorus concentration in sites 
classified biologically into good or better and moderate or poor status. Data are synthesised to illustrate a good 
separation of total phosphorus concentration. vertical lines mark a range of potential good/moderate boundary 
values; 10th quantile of total phosphorus in sites classified as moderate (red line) and 90th quantile for sites 
classified as good (blue line). 
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Figure 2.2. Density distribution and box plots showing the range of total phosphorus concentration in sites 
classified biologically into good or better and moderate or poor status. Data are synthesised to illustrate a poor 
separation of total phosphorus concentration. vertical lines mark a range of potential good/moderate boundary 
values; 10th quantile of total phosphorus in sites classified as moderate (red line) and 90th quantile for sites 
classified as good (blue line).  

 

 

 

2.4 The confusion matrix 

To understand our approach it is important to clarify the following 2 points. 

1) We are predicting Biology from the Supporting Elements, it means that we create expectations if 
a supporting element is within, or is not within, a good range of values. Based on those supporting 
element values we predict biological status and compare them with observed biological status. 

2) Secondly, when predictions and observations match we have TRUE predictions and where there is a 
mismatch we have FALSE predictions. In our case we split the TRUE predictions into True Positive and 
True Negative when the predicted and observed match respectively for good and not good status. Thus 
linking it to a condition and not with the presence/absence of a supporting element as usually applied. 
Therefore we define: 

 TRUE Positive status (both biota and SE are good, a positive acceptable condition 

 TRUE Negative status (both biota and SE are not good, a negative non-acceptable 
condition) 

So, if we think of the error in terms of the predictions, then: 
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 FALSE Positive predictions – would be the SE falsely predicting biota as good (positive) 
status 

 FALSE Negative predictions – would be the SE falsely predicting biota as not good 
(negative) status. 

Thus, for any data-set we can visualise the biological and supporting element classifications in a simple 2 x 2 
matrix (Table 2.1). The elements of the matrix show the number of the same or correct classifications (true 
positive and true negative results) and different or mis-classifications (False positive and False negative results). 
There are different ways of arranging such a matrix, but in the context of SE boundaries we are used to a visual 
representation of biota status (e.g. EQR) as a vertical y axis, with the SE as a horizontal x axis. Thus, for our 
confusion matrix we show the observed (true) biota status on the vertical side and the SE status on the 
horizontal. This arrangement also simplifies comparing pressure response plots to the confusion matrix (Figure 
2.4). 
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Table 2.1. Confusion Matrix (or Classification Error Matrix) comparing biological and nutrient status classes. +ve 

= positive, -ve = negative.  

  Predicted Predicted 

  Good(1) nutrient Not Good(0) nutrient 

Observed Good(1) biota True +ve (1,1) False -ve (1,0) 

Observed Not Good(0) 
biota 

False +ve (0,1) True -ve (0,0) 

 

 

A number of different measures that can be calculated from the confusion matrix are commonly used (Fielding 
and Bell, 1997) to assess the success of models predicting classifications. Those most useful for our purposes 
are shown in Table 2.2 These measures can be split into three groups, the first two measures miss-classification 
rate (Misclass) and kappa (kp) are measures of overall classification success, the following two FPR and FNR are 
overall proportions of false positive (Fp) and negative (Fn) classification for nutrients. These were the measures 
used in the toolkit for the misclassification method, which determined a boundary where these measures were 
equal. The other two measures are conditional proportions of false positive (Fp) and negative (Fn) classifications 
Commission and Omission, both expressed as the proportions of the “true” (observed biological) classes. In the 
medical literature Sensitivity the proportion of correctly predicted positive values (biota good, nutrients good) and 
the inverse Specificity the proportion of correctly predicted negative values (biota not good, nutrients not good). 
However, in the context of boundary setting we are more interested in the incorrect predictions, results where the 
biology would be incorrectly classified, we propose using Commission the proportion of false positives (biota not 
good, nutrients good) and Omission the proportion of false negatives (biota good, nutrients not good). The final 
two measures, the Over and Under Prediction Rates (OPR and UPR) are similar, but the proportions are expressed 
relative to the SE classes, rather than the true biota class and are thus less useful. 
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Table 2.2. Measures to assess confusion matrix. N= total number of classifications. 

Measure Abrev Calculation Explanation Criteria 

Correct classification 
rate 

CCR (Tp+Tn)/N proportion of correct 
classifications 

maximum value 

Kappa kp [(Tp+Tn)-
(((Tp+Fn)(Tp+Fp)+(Fp+Tn)(Fn+Tn))/N)] / [N-
(((Tp+Fn)(Tp+Fp)+(Fp+Tn)(Fn+Tn))/N)] 

index of classification power 
expressed as a ratio of 
observed agreement (Po) and 
expected agreement (Pe) 

Kappa = (Po-Pe)/(1-Pe) 

maximum value 

False positive rate 
(non conditional) 

FPR Fp/N predicted proportion of false 
positives 

Optimum balance 
FNR=FPR (toolkit mis-
match method) 

False negative rate 
(non conditional) 

FNR Fn/N predicted proportion of false 
negatives 

Optimum balance 
FNR=FPR 

False positive rate 
(conditional on 
observed biota) 

Commission (1-
Specificity) true -ve 

Fp/(Fp+Tn) A measure of “badness of fit” 
predicted false positives as 
proportion of all true (biota) 
negatives 

Optimum balance, 
Commission=Omission or 
consider minimise either 
to value of 0.1 for 
skewed data 

False negative rate 
(conditional on 
observed biota) 

Omission (1-Sensitivity) 
true +ve 

Fn/(Tp+Fn) A measure of “badness of fit” 
predicted false negatives as 
proportion of all true (biota) 
positives 

Optimum balance, 
Commission=Omission or 
consider minimise either 
to value of 0.1 for 
skewed data 

Over prediction rate 
(conditional on 
predicted nutrient 
boundary) 

OPR Fp/(Tp+Fp) predicted false positives as 
proportion of all predicted 
positives. 

Optimum balance, 
OPR=UPR 

Under prediction rate 
(conditional on 
predicted nutrient 
boundary) 

UPR Fn/(Tn+Fn) predicted false negatives as 
proportion of all predicted 
negatives. 

Optimum balance, 
OPR=UPR 
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2.4.1 An example of a confusion matrix 

Using the example data from Figure 2.2 and selecting an arbitrary boundary (in this case where the 75 th and 
25th quantiles are equal) to categorise the SE total phosphorus, the resulting confusion matrix is shown in 
Figure 2.3. In this example the data are evenly balanced with similar number of sites classified by biota as 
good (79+27=106) and not good (23+71= 94), a prevalence of 0.53 (the proportion of good biota in the data 
set). As a result, the proportions of false +ve (Commission) and false -ve (Omission) are similar with a 
relatively high proportion of sites correctly classified (CCR = 0.75). 

 

 

Figure 2.3. Density distribution and box plots showing the range of total phosphorus concentration in sites 
classified biologically into good or better and moderate or poor status using an arbitrary TP boundary 
(vertical line). Confusion matrix showing a comparing the classifications. Data are synthesised as in Figure 
2.2. 

 

2.4.2 Example of confusion matrix with less ideal data 

An ideal data set will have relatively few mis-classifications and these will be evenly distributed between 
false negative and false positive results, although for many data sets this may not be the case. In the best 
practice guide we point out that a scatter plot showing the relationship between a continuous measure of 
biological status (EQR) and nutrient concentration may resemble a wedge, where for example other additional 
pressures reduce EQR values. Alternatively, an inverted wedge may occur where additional factors, such as 
grazing or light limitation, counteract the effect of nutrients. In these situations fitting linear models is not 
always appropriate as the variance of model residuals is unlikely to be constant across the pressure gradient 
(the data exhibit heteroscedasticity) and the mis-classifications in the classification matrix that will be 
generated when the predicted nutrient boundary values is used for classification can be different, with a 
greater proportion of false negatives (inverted wedge) or false positives (wedge). 

An example of such a data set is shown in Figure 2.4. The data set used was synthetic, with a known 
relationship between EQR and TP plus a random error term, following the method in (Phillips et al. 2019). The 
data set included an additional factor simulating a counteracting influence of an additional unknown variable 
thus generating a typical inverted wedge shaped data cloud. The range of TP values in each of the biota 
classes overlap substantially, but based on the known relationship the true good moderate boundary of the 
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data set was 40 ugL-1. A conventional linear model predicts a boundary value of 70 ugL-1 (Figure 2.4a). With 
this boundary, the confusion matrix (Figure 2.4b) shows a very high Commission (false +ve) rate of 0.7, 
contrasting with a very low Omission rate of 0.03 (false -ve). Thus with this boundary there is a substantial 
risk that sites predicted to be at good biological status based on the TP class will actually be not in good 
status (false +ve). Thus, the boundary is likely to be insufficiently precautionary and a lower value is probably 
appropriate. 

2.5 The binary logistic model 

The confusion matrix is not dependent on the method of establishing the boundary but one modelling 
approach, the binary logistic model (BLM), is well suited to the technique. While a GLM model generates a 
single boundary value using the intersection of the fitted model to the good/moderate boundary values (EQR 
= 0.6), the BLM predicts the probability of being in good status over the range of nutrient concentration 
values in the data set. The boundary concentration is determined from a particular threshold probability. In 
the best practice guide we suggested using the probability of 0.5, as this is the concentration where there is 
an equal chance of being in good or not good status, however other probabilities can be selected. For 
example if we wish to be more certain that good status can be achieved we could select a higher probability 
value. This requires subjective decisions, but we can use the classification (confusion) matrix and the 
measures used to quantify mis-classifications as a guide. This is greatly simplified using the R package 
modEva which calculates a wide range of measures for all potential probability thresholds for a particular 
binary logistic model (Table 2.2). 

 

 

Figure 2.4.  a) Scatter plot showing relationship between EQR and total phosphorus; b) confusion matrix 
comparing biotic and TP classification resulting from default p threshold. Synthetic data with an inverted 
wedge distribution simulating the effect of an unknown factor mitigating the impact of phosphorus. 

 

An example of fitting a BLM to the same data set as that used in Figure 2.4 (the inverted wedge-shaped 
distribution) is shown in Figure 2.5a. Using the default probability threshold of 0.5, as suggested in the last 
guidance, produces a similar boundary value (71ugL-1 boundary value as the linear model and thus the same 
confusion matrix. The box plots (Figure 2.5c, d) illustrate this very clearly, with the boundary value almost as 
high as the 75th quantile of TP in the mode rate or worse sites. These results clearly show how fitting a 
linear model or always using a threshold probability of 0.5 with a BLM is not necessarily appropriate. 
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Figure 2.5. a) logistic model fitted to the data shown in Figure 2.4, with default (p=0.5) probability threshold 

marked; b) confusion matrix comparing biotic and TP classification resulting from default p threshold; c) box 
plots comparing range of TP in the biota classes; d) box plots comparing the range of EQR in the TP classes. 

 

Using the modEva package we can inspect the effect of using different threshold probability values to 
determine the TP boundary for these data (Figure 2.6). The correct classification rate (CCR) is the least useful 
metric as at low and high probabilities its value will reflect the proportion of sites in the most or least 
common class (Prevalence). The kappa statistic is a more useful indicator of accuracy with a maximum value 
of 0.35 at a probability of 0.54 (point b Figure 2.6, Table 2.3). At this point the commission (false +ve) rate is 
still 0.652. Given the purpose of boundary setting (supporting good status for the BQE), we suggest that 
reducing commission is more important than reducing omission. The omission rate (false -ve) increases 
steadily from p=0.6, equaling commission at a probability of 0.76 (point e Figure 2.6). At this point 
commission is substantially reduced to 0.283. A further increase of p would reduce this further, but that will 
also increase omission. 

Selecting the most appropriate threshold probability is thus a compromise between maximising overall 
classification accuracy, reducing commission without excessive omission. It seems reasonable to suggest that 
the most appropriate probability threshold lies between that given by the maximum kappa and a maximum 
of 0.9 or the probability where the omission rate is not greater than twice the commission. Additionally the 
value of kappa should ideally be ≥ 0.21, the threshold for fair agreement (Landis and Koch 1977). By listing 
the different measures by ascending probability (Table 2.3) it is possible to identify this range p 0.54-0.8, 
boundary 67-40 ugL-1. Given that these data had clear evidence of an inverted wedge, then a precautionary 
boundary would be obtained using p=0.8, a boundary of 40 ugL-1, which was the true boundary for this 
synthetic data set (Figure 2.7). It should also be noted that where data distributions are wedge shaped the 
distribution of EQR values by the SE class when the SE class boundary is set as described above (Figure 2.7d) 
will not reflect the normalised EQR boundary value of 0.6. This highlights that the mis-classification rates 
conditional on the predicted (i.e. SE) class (OPR and UPR) are not useful, note the very high predicted 
boundary (107 ugL-1) for the probability threshold where OPR = UPR (Figure 2.8). 
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Figure 2.6. Change in measures used for assessing confusion matrix, with five possible cut-points marked; 

a) max CCR, b) max kappa,  c) the intersection of FNR/FPR, d) commission = 0.2, e) cross-over 
commission/omission, f) commission = 0.1. Measures created using binary logistic regression fitted to data 
used for Figure 2.4. 

 

Table 2.3. Predicted boundary values, together with key measures from confusion matrix, from binary 

logistic models fitted to synthetic data used in Figure 2.4 and 2.5. 

measure criteria 
p 
threshold 

GM 
boundary LCL UCL commission omission kappa 

CCR maximum 0.46 76 63 106 0.717 0.028 0.325 

default NA 0.50 71 60 96 0.696 0.034 0.337 

kappa maximum 0.54 67 57 87 0.652 0.055 0.350 

TKitMM Cross-over FPR/NPR 0.66 54 47 66 0.522 0.159 0.322 

OmisComm Cross-over 
Omis/Commis 

0.76 44 37 52 0.283 0.317 0.321 

Com0.2 equal 0.2 0.80 40 33 47 0.196 0.400 0.297 

Com0.1 equal 0.1 0.87 33 24 39 0.109 0.566 0.207 
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Figure 2.7. Results of fitting binary logistic model to data used for figure 2.4; a) scatter plot with model fit 

and predicted boundary concentrations for p threshold determined by commission = 0.2; b) confusion matrix 
showing number of true and false records and measures, c) boxplots showing range of TP for waterbodies 
classified by biota. d) boxplots showing range of EQR for waterbodies classified using the predicted TP 
boundary. Dotted lines show boundary values. 
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Figure 2.8. Results of fitting binary logistic model to data used for figure 2.4; a) scatter plot with model fit 

and predicted boundary concentrations for p threshold determined by OPR = UPR; b) confusion matrix 
showing number of true and false records and measures, c) boxplots showing range of TP for waterbodies 
classified by biota. d) boxplots showing range of EQR for waterbodies classified using the predicted TP 
boundary. Dotted lines show boundary values. 

 

2.6 Assessing model fit 

Another important consideration is the overall fit of the model. We have already illustrated the difference 
between data sets with high and low overlap of SE distributions for the two biota classes (Figure 2.1 & Figure 
2.2). Where a continuous modelling approach is used current guidance proposes using r2 to assess model 
performance. This metric is not available for a BLM, although a pseudo r2 can be calculated. However, given 
the focus on comparative classifications we can also use a receiver operating characteristic (ROC) plot (Figure 
2.9a). This relates the sensitivity (true +ve) to commission (false +ve) rates for all p thresholds, a straight line 
represents no relationship and the area under the curve (AUC) provides an overall index of fit varying from 
0.5 - 1.0 (complete to no overlap of distributions). The test data set had an AUC of 0.774 indicating that for 
77% of the time a random selection from the good biota group would be more likely to be predicted as good 
than a random selection from the moderate biota group. Generally, an AUC or 0.7-0.8 is adequate, 0.8-0.9 
good, while >0.9 is excellent. The pseudo r2 and AUC are related (Figure 2.9b), although clearly when 
prevalence is high (>0.8) the AUC may be higher than expected. Kappa is a threshold dependent measure of 
classification success and the maximum value of kappa is also related to AUC (Figure 2.9c) with a kappa of 
0.32 and an AUC of 0.7. As a general guide an adequate model would be expected to have an 𝐴𝑈𝐶 ≥ 0.70, a 
pseudo r2 of ≥ 0.15 and a maximum kappa of ≥ 0.32. 
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Figure 2.9. a) ROC curve for data used for figure 2.4; b) relationship between AUC and pseudo r2; c) 

relationship between AUC and maximum kappa. Data for b and c were from different subsets of the river 
data described in the associated document on river boundaries. 

Although not unexpected it should be noted that mis-classification rates will be dependent on AUC, with the 
value of commission for maximum kappa and Omission = Commission declining as AUC increases (Figure 
2.10c). Data prevalence can also be an important factor, with higher threshold probabilities as prevalence 
increases (Figure 2.10b). Increasing prevalence also increases the value of commission, while having no 
influence on the intersection of omission and commission (Figure 2.10d), thus typically omission will be lower 
when the critical threshold is based on omission = commission than at maximum kappa when prevalence is 
high, similar when it is close to 0.5 and lower when prevalence is low. 
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Figure 2.10. Relationship between a) threshold probability and AUC; b) threshold probability and data 

prevalence; c) value of commission and AUC; d) value of commission and prevalence. Each split by different 
measures, maximum value of kappa, omission = commission and commission = -0.2. 

 

2.7 Summary 

To determine supporting element boundaries we recommend 

1. Regardless of the method used to determine a boundary value construct a confusion matrix 
comparing the resulting binary classifications and calculate at least the following metrics (kappa, 
omission and commission rates) to enable an assessment of mis-classification rates. 

2. Use a binary logistic model to determine a range of potential boundary values using different 
probability cut levels. 

3. Check model performance using r2 for continuous models, pseudo r2 (≥ 0.15 ,based on river TP 
models) and AUC (≥ 0.70). 

4. Select the most appropriate probability cut level, after considering how important it is to minimise 
commission (false +ve) or omission (false -ve) rates. 

5. The range of appropriate threshold probability values is likely to be between that provided by the 
maximum value of kappa and the point where omission = commission. 
 

6. Except where there is clear evidence of secondary pressures reducing the status of the biota, aim to 
minimise commission rates. 

7. In general select the lowest commission value where omission has not increased to more than 
double the commission value, the threshold probability ≤ 0.9 and kappa is ≥ 0.21. 
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3 Lake boundaries 

This section is a revised version of a report written in 2021. It has been updated to reflect changes to the 
approach used to select the most appropriate probability thresholds used for determining the predicted 
boundary values for binary logistic models (BLMs) as described in Section 2 of this report. 

3.1 Approach to modelling 

Two types of model are fitted to the data. 

1. Where comparable EQR values (e.g Normalised EQRs) are available a continuous regression 
modelling approach is used. The best practice guide highlights the need to select linear parts of the 
pressure response gradient when fitting models. This typically requires filtering the data using an 
upper nutrient threshold above which EQR values are less responsive. However where EQR values are 
truncated, as occurs during normalisation (to make national EQRs comparable), curvature also occurs 
as EQR values approach 1.0. To overcome this I have fitted a Generalised linear model (GLM) with a 
logit link function to the data which better allows for this curvature. This model is not currently 
available in the tool-kit, but can be added in the next revision. 

2. Where normalised EQR values are not available, a binary logistic model is fitted to the data using an 
almost identical approach to that in the current toolkit. The only differences is that for this work we 
define the binary categories differently, as we are predicting good or better status, rather than 
moderate or worse. Thus good or better status = 1, while moderate or worse = 0. 

For both modelling approaches we use the predicted nutrient boundary value to classify the data and create 
a classification matrix. We then compare the mis-classification rates using a range of measures widely used 
for this purpose (Fielding and Bell 1997). 

The GLM models generate a single boundary value, together with uncertainty estimates (confidence limit), 
based on the intersection of the fitted model to the good/moderate boundary values (EQR = 0.6). However, 
the binary logistic model predicts the probability of being in good status for the range of nutrient 
concentration values in the data set. The boundary concentration is determined from a particular threshold 
probability. In the best practice guide we suggest using the probability of 0.5, as this is the concentration 
where there is an equal chance of being in good or not good status. However, other probabilities can be 
selected and where for example we wish to be more certain that good status can be achieved we could select 
a higher probability value. This requires a subjective decisions, but we can use the classification (confusion) 
matrix and the measures used to quantify mis-classifications as a guide. We use the r package modEva to 
achieve this and full details of the approach are provided in section 2 of this report. 

3.2  Data 

For lakes, models were fitted to three data sets. 

3. SoE data-set. Data collated by the EEA for state of the environment reporting. 
Data at water body/Year level for phytoplankton status (NEQR) were matched to mean annual 
nutrient concentrations. These data were screened to remove records where the calculated NEQR 
values did not match status originally reported and excluded EQR values where the method was 
specific to acidification pressure. For this data-set both GLM and binary logistic models were fitted 
(using binary categories calculated from the NEQR). 

4. WFD data-set. Data obtained from the WFD classification database and linked by water body to 
the EEA SoE nutrient concentrations. As this data-set only contained categorical (WFD class) data 
only binary logistic regression models were applied. 

5. IC data-set. Data collated for the phytoplankton inter calibration process and subsequently used to 
determine boundary values using the IC typology (Poikane et al. 2015). Although these data included 
both national and common metric EQR values these are not normalised and thus cannot easily be 
used for lakes grouped using the broad typology (Lyche-Solheim et al., 2019). Thus as for the WFD 
data set only binary logistic regression models are used. 
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The IC data set was the largest and while it contained fewer lake types it was originally compiled regionally 
and had sufficient TP and TN records (>10 in each binary class & >50 total records) for most lake types to be 
modeled (Figures 3.1 & 3.2) and for some types to model different regions. The WFD data set was the 
smallest but together with the SoE data set provided useful additional data which might reflect a wider range 
of lake conditions within each of the broad types. Where possible lakes falling into one of the main broad 
types were used, but in some cases the aggregated lake types were needed to provide sufficient records (LA-
03 lowland & mid-altitude calcareous and LA-04 lowland & mid-altitude siliceous). 

 

Figure 3.1. Comparison of number of total phosphorus records available in the three data sets by broad type 
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Figure 3.2. Comparison of number of total nitrogen records available in the three data sets by broad type. 

3.2.1 Data prevalence 

The balance of the data, in terms of the proportion of records where the observed phytoplankton class is in 
good or not good status (data prevalence) is important as it can influence model outcomes. For a well 
balanced data set (prevalence =0.5) most modelling approaches will generate similar predictions. However, 
when the data are less well balanced it is important to be aware that for BLMs the predicted boundary will 
tend to be drawn towards the most numerous class. The majority of the datasets are well balanced with 
prevalence values between 0.4 and 0.6, but some lake types have data with relatively high values >0.8 (LA-
04, LW-02, LW-05, LW-07, LW-08, LW-14), the siliceous , mid-altitude and highland lakes. This imbalance in 
the data does not prevent modelling, but the resulting predicted boundaries might be lower than they would 
had a more balanced data set been available. 
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Figure 3.3. Prevalence (biota good:not good) of TP and TN data for each dataset by lake type 
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4 Lake total phosphorus boundaries, model results 

Models were fitted to each data set by lake type. Full details of the models, the predicted boundary values 
and the resulting confusion matrices and the measures used to select appropriate cut levels are available in 
an appendix, as this report only presents an overview of the results. 

4.1  Model performance 

For linear modelling the strength of the relationship between biology and supporting element is assessed 
using the r2 value, with models generating low values for r2 being rejected. With logistic models it is only 
possible to calculate a pseudo r2 and while this is indicative of the strength of the relationship it is less 
comparable between models which use different data. 

However, by using this discrete modelling approach, which requires a probability threshold to be selected, a 
greater emphasis is placed on the relative classifications of biology and TP, via a consideration of the 
confusion matrix. This provides an opportunity to assess the overall strength of the relationship as an 
alternative assessment can be generated from the confusion matrix, where the relationship between the 
proportion of true positive and negative values are plotted against each other to form an ROC (Receiver 
Operating Characteristic) curve. The area under this curve (AUC) is a measure of the overall success of 
detecting, in this case, a difference between the two biological categories using 2 categories of TP. A high 
value (AUC > 0.8) suggests that TP is a good predictor, a lower value (AUC > 0.7) a fair predictor, while a 
value of AUC = 0.5 indicates that a random flip of a coin would be as good as using TP, thus no relationship 
between biological status and TP. The majority of the TP data sets provided AUC values >0.7, the median AUC 
for the SoE data was > 0.8, while 75% of the IC data sets had values >0.8 (Figure 4.4c). 

The AUC statistic cannot be generated for a GLM, but to compare the relative performance of the GLM and 
BLM approaches we compared how successful the resulting TP classifications were in comparison to the true 
classification derived from phytoplankton using kappa, a measure of overall agreement. The GLM models 
clearly generated classifications with an overall higher level of agreement (i.e. higher value of kappa) than 
the BLM models (Figures 4.1a). However, the GLM models also produced a much higher commission (false 
+ve) classification rate, i.e. many sites that where phytoplankton were actually worse than good were 
incorrectly predicted to be in good status (Figures 4.1b). Thus with these data the GLM models typically 
generate boundary values that are unlikely to be sufficiently precautionary, while by selecting an appropriate 
probability threshold the BLM model predicted boundary concentrations that give a more balanced ratio of 
mis-classifications, albeit with a lower overall accuracy. 



 

25 
 

 

Figure 4.1 Comparison of mis-classification outcomes using different modelling (GLM and BLM) approaches 
a) value of kappa, b) commission (false+ve) and omission (false -ve) rates. (horizontal dotted line marks 
kappa = 0.21, a suggested level for acceptable accuracy, see 2.7). 

 

4.2 Selecting appropriate threshold probability thresholds for BLM models 

Table 4.2 details the lake TP values derived from the BLM models applied to data from different lake types, 
together with the mis-classification rates and model fit parameters. For each type four potential measures 
are shown (toolkit mismatch method where false +ve & -ve rates are equal; maximum kappa; omission & 
commission rates are equal, commission rate = 0.1.). The range of probability thresholds for each of these 
criteria, the resulting TP boundary and relative mis-classification rates are shown in Figure 4.2. In most cases 
selecting either the tool-kit mis-match method or the probability threshold that maximised correct 
classifications (maximum kappa) generated the lowest probability threshold and thus higher boundary value 
(Figure 4.2ab). However, these measures generated higher commission (false +ve) rates. Given the need to 
establish a relatively precautionary boundary a lower threshold was selected that minimised the commission 
(false +ve) rate, subject to that probability being ≤ 0.9, kappa ≥ 0.21 and omission < double commission 
rate. These values are shown in table 4.1 and in figure 4.3. They can be compared with boundary 
concentrations predicted using the other potential probability thresholds in table 4.2. 
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Figure 4.2. Effect of different thershold probability measures on a) the probability threshold, b) predicted TP 

boundary values, c) mis-classification rates (commission false +ve, omission false -ve). 
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Figure 4.3. Predicted total phosphorus boundary values for lakes by broad type using models fitted to data 

from all available countries, compared to upper and lower quartiles of MS boundary values (grey shading) 
and estimated pan-European boundary values reported by (Nikolaidis et al. 2021) (yellow shading). (Vertical 
lines show 95% confidence limits). 

4.3 Lake TP boundary values 

The predicted good moderate boundary values varied from 11 - 65ugL-1. There were clear differences 
between lake types, with the highest values occurring in the lowland calcareous very shallow lakes (LW-04), 
followed by the lowland calcareous shallow stratified lakes (LW-03), with the lowest found in the lowland 
siliceous (LW-02) and mid-altitude siliceous (LW07) lakes. The range of predicted boundary values was 
generally similar to the inter quartile range of the values reported by Member States (grey shaded area in 
Figure 4.3), suggesting that the modelling was broadly appropriate and reflected the collective Member 
States view of the TP concentrations that support good status. 

However, as expected the different modelling approaches and data sets generated different type specific 
boundary values. Thus, to determine a typical boundary value we need to consider the factors that influence 
the specific model predictions, the modelling approach, and the representativeness and distributions of the 
data sets used. 

4.3.1 Effect of model used 

Predictions using the continuous GLM model were in most, but not all, cases higher than those made using 
the binary logistic models (Figures 4.3 with values often exceeding the interquartile range of MS boundary 
values. The scatter plots of EQR v TP (see appendix) suggest the reason was heteroscedasticity, with evidence 
of an inverted wedge pressure response curve, where unknown environmental factors were reducing the 
impact of elevated TP on phytoplankton and thus reduce the slope of the response. This illustrates the 
consequence of fitting continuous models without considering the distribution of residuals and consequently 
the imbalance of false positive/negative classifications. 

The differences between the boundaries predicted using the measures used to determine probability cut 
thresholds for the discrete binary models was smaller (Figure 4.2b), but higher boundaries were predicted 
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when the maximum of kappa was used in comparison to the equivalence of omission and commission. This is 
as expected, as using the former measure (kappa) seeks to minimise mis-classification, while the latter 
measure balances the false positive and negative classifications which, with an inverted wedge distribution 
of the pressure response relationship, reduces the proportion of false positives (TP predicts good but biology 
was actually not good). 

4.3.2 Effect of prevalence 

For the lake data in most, but not all cases, using the equivalence of omission and commission generated a 
higher probability threshold and a more precautionary boundary value. This was because the prevalence 
(ratio of Good:Not Good sites) was greater than 0.5. Where prevalence is <0.5 (i.e. the data is weighted 
towards not good sites) then using the measure of maximum kappa generates a higher threshold probability 
and lower boundary value, illustrating how with binary models minimising commission (false +ve) rates tends 
to pull the predicted boundary towards the dominant class in the dataset. Thus, where the prevalence is very 
high (>0.9) there is a risk of under predicting the boundary. For the lake TP data the following lake data sets 
exceeded this threshold (LA-04IC, LW-02IC, LW-05IC, LW-07IC). However, the selection rule that specified 
that the optimum probability threshold should be ≤ 0.9 ensured that for these data sets a lower probability 
threshold (e.g. maximum kappa) was selected (Figure 4.3 & Table 4.2) and thus excessively low boundary 
concentrations were avoided. 

4.3.3 Importance of data set used 

4.3.3.1 Representativeness 

Model predictions are clearly dependent on the data sets used. The WFD data set was smaller and only had 
sufficient data to allow the three most common lowland lake types to be modeled (siliceous LW-02, 
calcareous stratified LW-03 and calareous very shallow L-04). However, this data set contained records from 
more countries which covered a wider range of conditions (prevalence values closer to 0.5, a value with an 
equal balance between good and not good categories) (Figure 4.4a). The IC data was a large data set and 
contained sufficient records for the majority of lake types to be modeled. It also generated the highest AUC 
values (Figure 4.4c), although it had records from fewer countries and may thus be less representative. 
Additionally both this and the SoE data sets were less balanced with higher prevalence values indicating 
dominance of records where phytoplankton was good or better (Figure 4.4b). Despite these differences there 
is no evidence that there was any clear bias in the different data sets (Figure 4.5). 

 

 

Figure 4.4. Range of a) number of countries in dataset; b) prevalence of the data; c) AUC of data. 
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Figure 4.5. Range of predicted TP good moderate boundary values by lake type and data set. 
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4.3.3.2 Regional variation 

There is considerable interest in whether there is regional variability in biological responses which needs to be 
considered in determining boundary values for the supporting elements. There were only sufficient data to 
model regions separately for the three common lowland European lake types (siliceous LW-02, calcareous 
stratified LW-03 & calcareous very shallow LW-04). There was a substantial overlap between the 
distributions of TP within each biological class in the siliceous lakes (LW-02) from the northern (N) and 
central (C) regions and consequently there was no significant difference between the predicted boundary 
values (Figure 4.6a). 

For the calcareous stratified lakes (LW-03) there were clear differences in the TP distributions and predicted 
boundary values (Figure 4.6b). For the calcareous very shallow lakes (LW-04) the Eastern region had clearly 
elevated TP which overlapped in both biological classes, resulting in a non significant model. There were too 
few impacted lakes to model the Northern region separately, so it was not possible to test the effect of 
region on the northern and central region data and boundaries were thus modelled for these two regions 
combined (Figure 4.6c). 

The only regions where a significant regional effect could be shown was for the shallow calcareous lakes. 
This is a common lake type and the definition of “calcareous” encompasses a wide range of lake alkalinities. 
For example, it contains the Northern IC type L-N1 lake type (moderate alkalinity) the Central L-CB1 
calcareous (high alkalinity) and the lowland or mid-altitude moderate-high alkalinity Alpine lakes. Thus while 
there were regional differences between boundaries for lake type LW-04 it is suggested that it is the wide 
definition of the broad type, rather than a regional climatic influence that is responsible for these differences. 
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Figure 4.6. Regional distribution of TP by phytoplankton class overlain by vertical lines showing predicted 

boundary values (± 95% confidence limits) from binomial logistic models. a) LW-02 lowland siliceous, b)LW-
03 lowland calcareous shallow, c) lowland calcareous very shallow. 

 

4.4 Most likely TP boundary ranges for lakes 

The resulting boundary values from each of the data sets are provided in Table 4.1. To simplify these and 
provide a most likely range of boundary values for European lakes is clearly challenging. There was 
insufficient data to develop region specific models and it is clear that the available data sets provided a 
range of variability and representativeness. The IC data produced the better models, but are biased towards 
higher status sites, while the WFD data are more representative but generate lower accuracy models, 
probably as the sites used are subject to a wider range of pressures and the data will contain some 
estimated classifications. The SoE data fall between these extremes and might provide the better data set to 
use for the purpose of generating most likely boundary values. 

However, rather than making this assumption it is suggested that a better alternative is to use all of the 
predicted boundary values from the binary logistic models, presenting these as box plots together with the 
highest and lowest of the boundary 95% confidence intervals (Figure 4.7). The most likely boundary ranges 
are then indicated by either the interquartile ranges (boxes in Figure 4.7, or where these are very small, due 
to restricted data, the range provided by the 95% confidence limits (blue bars in Figure 4.7). 
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To place these values into context the range provided by the maximum and minimum values of the 95th 
percentiles are compared with the distribution of TP of the combined data sets and the most recently 
reported MS boundary values (Figure 4.8). 

 

Figure 4.7. Range of predicted boundary values, overlaid on points showing values coloured by the 
probability threshold measure used, for broad lake types using 3 data sets (IC, SoE, WFD). Red points show 
the boundary values predicted using a GLM for comparison. 
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Table 4.1. Predicted type specific lake TP boundary values derived using binary logistic models, together with key measures from confusion matrix 

lake type dataset boundary lcl ucl p thresh commission omission kappa AUC pseudo r2 countries 

LA-04 IC 22 20 24 0.66 0.31 0.03 0.67 0.95 0.60 5 

LA-04 SoE 15 11 20 0.88 0.28 0.26 0.30 0.84 0.34 5 

LW-02 IC 12 10 15 0.88 0.54 0.11 0.23 0.82 0.17 7 

LW-02 SoE 14 10 17 0.89 0.26 0.24 0.35 0.86 0.39 7 

LW-02 WFD 14 7 25 0.67 0.32 0.30 0.36 0.73 0.21 8 

LW-03 IC 25 23 27 0.59 0.25 0.25 0.49 0.83 0.40 16 

LW-03 IC-A 12 10 15 0.55 0.24 0.25 0.51 0.87 0.56 3 

LW-03 IC-C 31 27 35 0.57 0.27 0.26 0.46 0.80 0.31 10 

LW-03 IC-N 19 17 20 0.77 0.10 0.18 0.69 0.96 0.80 3 

LW-03 SoE 46 30 69 0.61 0.31 0.33 0.34 0.73 0.15 9 

LW-03 WFD 46 38 56 0.56 0.34 0.33 0.33 0.73 0.21 11 

LW-04 IC 60 48 74 0.64 0.16 0.32 0.50 0.79 0.29 15 

LW-04 IC-C 65 54 81 0.51 0.23 0.26 0.51 0.82 0.37 10 

LW-04 IC-CN 49 41 61 0.66 0.13 0.24 0.62 0.86 0.46 12 

LW-04 SoE 52 36 72 0.57 0.24 0.23 0.53 0.82 0.34 7 

LW-04 WFD 61 42 92 0.30 0.30 0.30 0.36 0.73 0.18 10 

LW-05 IC 22 20 24 0.71 0.23 0.04 0.69 0.95 0.62 5 

LW-05 SoE 14 10 18 0.88 0.31 0.28 0.25 0.81 0.26 2 

LW-06 IC 26 23 30 0.56 0.18 0.20 0.62 0.88 0.53 5 

LW-07 IC 14 12 17 0.65 0.31 0.03 0.66 0.96 0.62 3 

LW-07 SoE 16 13 23 0.70 0.38 0.04 0.58 0.89 0.54 6 

LW-08 IC 23 18 29 0.58 0.23 0.21 0.56 0.89 0.57 3 

LW-13 IC 29 19 41 0.72 0.27 0.28 0.40 0.82 0.36 4 
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Figure 4.8. Violin plots showing the range of TP concentrations in lakes split by lake broad types overlain by 

proposed most likely boundary range (vertical red lines) derived from the highest and lowest confidence 
intervals of all predicted values. Grey shading marks interquartile range of Member State reported boundary 
values. 
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Table 4.2. Predicted type specific lake TP boundary values and key confusion matrix measures derived from binary models using different probability thresholds. 

Select dset typology Bound lcl ucl measure threshold commission omission Prev kappa Auc pseudo.r2 Ncountries 

0 LA-04IC LA-04 22 20 24 kappa 0.66 0.31 0.03 0.92 0.67 0.95 0.60 5 

1 LA-04IC LA-04 22 20 24 TKitMM 0.66 0.31 0.03 0.92 0.67 0.95 0.60 5 

0 LA-04IC LA-04 15 13 17 OmisComm 0.93 0.13 0.13 0.92 0.45 0.95 0.60 5 

0 LA-04IC LA-04 15 13 16 Com0.1 0.94 0.09 0.15 0.92 0.43 0.95 0.60 5 

0 LA-04SoE LA-04 27 21 36 TKitMM 0.73 0.44 0.07 0.86 0.49 0.84 0.34 5 

0 LA-04SoE LA-04 25 19 33 kappa 0.76 0.38 0.08 0.86 0.52 0.84 0.34 5 

1 LA-04SoE LA-04 15 11 20 OmisComm 0.88 0.28 0.26 0.86 0.30 0.84 0.34 5 

0 LA-04SoE LA-04 10 6 13 Com0.1 0.94 0.09 0.50 0.86 0.18 0.84 0.34 5 

0 LW-02IC LW-02 14 11 19 TKitMM 0.84 0.88 0.05 0.94 0.08 0.82 0.17 7 

1 LW-02IC LW-02 12 10 15 kappa 0.88 0.54 0.11 0.94 0.23 0.82 0.17 7 

0 LW-02IC LW-02 9 7 11 OmisComm 0.93 0.21 0.26 0.94 0.20 0.82 0.17 7 

0 LW-02IC LW-02 7 5 8 Com0.1 0.96 0.08 0.47 0.94 0.11 0.82 0.17 7 

0 LW-02SoE LW-02 26 21 33 kappa 0.73 0.36 0.06 0.85 0.58 0.86 0.39 7 

0 LW-02SoE LW-02 26 21 33 TKitMM 0.73 0.36 0.06 0.85 0.58 0.86 0.39 7 

1 LW-02SoE LW-02 14 10 17 OmisComm 0.89 0.26 0.24 0.85 0.35 0.86 0.39 7 

0 LW-02SoE LW-02 11 8 14 Com0.1 0.92 0.09 0.35 0.85 0.31 0.86 0.39 7 

0 LW-02WFD LW-02 18 11 35 TKitMM 0.62 0.44 0.23 0.64 0.33 0.73 0.21 8 

0 LW-02WFD LW-02 18 10 33 kappa 0.63 0.38 0.25 0.64 0.36 0.73 0.21 8 

1 LW-02WFD LW-02 14 7 25 OmisComm 0.67 0.32 0.30 0.64 0.36 0.73 0.21 8 

0 LW-02WFD LW-02 8 3 13 Com0.1 0.78 0.09 0.70 0.64 0.17 0.73 0.21 8 

0 LW-03IC LW-03 35 31 38 kappa 0.45 0.37 0.11 0.57 0.53 0.83 0.40 16 

0 LW-03IC LW-03 27 24 30 TKitMM 0.56 0.27 0.21 0.57 0.52 0.83 0.40 16 

1 LW-03IC LW-03 25 23 27 OmisComm 0.59 0.25 0.25 0.57 0.49 0.83 0.40 16 

0 LW-03IC LW-03 17 16 19 Com0.1 0.73 0.10 0.45 0.57 0.42 0.83 0.40 16 

0 LW-03IC-A LW-03 17 14 24 kappa 0.31 0.32 0.03 0.49 0.66 0.87 0.56 3 

0 LW-03IC-A LW-03 12 10 15 OmisComm 0.55 0.24 0.25 0.49 0.51 0.87 0.56 3 

1 LW-03IC-A LW-03 12 10 15 TKitMM 0.55 0.24 0.25 0.49 0.51 0.87 0.56 3 

0 LW-03IC-A LW-03 10 7 12 Com0.1 0.71 0.10 0.40 0.49 0.50 0.87 0.56 3 
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Select dset typology Bound lcl ucl measure threshold commission omission Prev kappa Auc pseudo.r2 Ncountries 

0 LW-03IC-C LW-03 35 31 41 kappa 0.52 0.30 0.19 0.55 0.51 0.80 0.31 10 

0 LW-03IC-C LW-03 33 28 38 TKitMM 0.55 0.27 0.24 0.55 0.49 0.80 0.31 10 

1 LW-03IC-C LW-03 31 27 35 OmisComm 0.57 0.27 0.26 0.55 0.46 0.80 0.31 10 

0 LW-03IC-C LW-03 18 15 22 Com0.1 0.74 0.09 0.57 0.55 0.32 0.80 0.31 10 

0 LW-03IC-N LW-03 24 22 27 kappa 0.39 0.18 0.02 0.63 0.83 0.96 0.80 3 

0 LW-03IC-N LW-03 21 19 23 TKitMM 0.62 0.16 0.09 0.63 0.75 0.96 0.80 3 

0 LW-03IC-N LW-03 19 18 21 OmisComm 0.72 0.14 0.14 0.63 0.70 0.96 0.80 3 

1 LW-03IC-N LW-03 19 17 20 Com0.1 0.77 0.10 0.18 0.63 0.69 0.96 0.80 3 

0 LW-03SoE LW-03 52 36 82 TKitMM 0.58 0.46 0.26 0.62 0.28 0.73 0.15 9 

1 LW-03SoE LW-03 46 30 69 OmisComm 0.61 0.31 0.33 0.62 0.34 0.73 0.15 9 

0 LW-03SoE LW-03 39 23 56 kappa 0.65 0.13 0.43 0.62 0.39 0.73 0.15 9 

0 LW-03SoE LW-03 34 19 49 Com0.1 0.68 0.09 0.50 0.62 0.36 0.73 0.15 9 

0 LW-03WFD LW-03 49 41 61 kappa 0.54 0.37 0.28 0.56 0.35 0.73 0.21 11 

0 LW-03WFD LW-03 49 41 61 TKitMM 0.54 0.37 0.28 0.56 0.35 0.73 0.21 11 

1 LW-03WFD LW-03 46 38 56 OmisComm 0.56 0.34 0.33 0.56 0.33 0.73 0.21 11 

0 LW-03WFD LW-03 29 21 36 Com0.1 0.71 0.10 0.64 0.56 0.24 0.73 0.21 11 

0 LW-04IC LW-04 90 74 115 TKitMM 0.55 0.31 0.25 0.56 0.44 0.79 0.29 15 

0 LW-04IC LW-04 83 68 108 OmisComm 0.57 0.26 0.26 0.56 0.48 0.79 0.29 15 

1 LW-04IC LW-04 60 48 74 kappa 0.64 0.16 0.32 0.56 0.50 0.79 0.29 15 

0 LW-04IC LW-04 47 34 61 Com0.1 0.69 0.10 0.40 0.56 0.47 0.79 0.29 15 

0 LW-04IC-C LW-04 69 54 88 OmisComm 0.49 0.25 0.24 0.48 0.52 0.82 0.37 10 

1 LW-04IC-C LW-04 65 54 81 TKitMM 0.51 0.23 0.26 0.48 0.51 0.82 0.37 10 

0 LW-04IC-C LW-04 49 41 61 kappa 0.60 0.13 0.33 0.48 0.55 0.82 0.37 10 

0 LW-04IC-C LW-04 43 34 54 Com0.1 0.64 0.10 0.41 0.48 0.50 0.82 0.37 10 

0 LW-04IC-CN LW-04 68 54 81 TKitMM 0.54 0.24 0.18 0.56 0.58 0.86 0.46 12 

0 LW-04IC-CN LW-04 61 54 74 OmisComm 0.58 0.20 0.19 0.56 0.60 0.86 0.46 12 

1 LW-04IC-CN LW-04 49 41 61 kappa 0.66 0.13 0.24 0.56 0.62 0.86 0.46 12 

0 LW-04IC-CN LW-04 42 34 48 Com0.1 0.71 0.10 0.34 0.56 0.55 0.86 0.46 12 

0 LW-04SoE LW-04 55 39 77 TKitMM 0.55 0.27 0.21 0.58 0.51 0.82 0.34 7 

0 LW-04SoE LW-04 53 38 75 kappa 0.56 0.24 0.21 0.58 0.55 0.82 0.34 7 

1 LW-04SoE LW-04 52 36 72 OmisComm 0.57 0.24 0.23 0.58 0.53 0.82 0.34 7 
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Select dset typology Bound lcl ucl measure threshold commission omission Prev kappa Auc pseudo.r2 Ncountries 

0 LW-04SoE LW-04 36 22 49 Com0.1 0.68 0.09 0.35 0.58 0.54 0.82 0.34 7 

0 LW-04WFD LW-04 61 42 92 kappa 0.30 0.30 0.30 0.29 0.36 0.73 0.18 10 

1 LW-04WFD LW-04 61 42 92 OmisComm 0.30 0.30 0.30 0.29 0.36 0.73 0.18 10 

0 LW-04WFD LW-04 43 27 60 TKitMM 0.38 0.20 0.49 0.29 0.30 0.73 0.18 10 

0 LW-04WFD LW-04 30 16 44 Com0.1 0.47 0.10 0.77 0.29 0.15 0.73 0.18 10 

0 LW-05IC LW-05 23 21 26 TKitMM 0.64 0.30 0.03 0.91 0.68 0.95 0.62 5 

1 LW-05IC LW-05 22 20 24 kappa 0.71 0.23 0.04 0.91 0.69 0.95 0.62 5 

0 LW-05IC LW-05 16 14 18 OmisComm 0.93 0.13 0.15 0.91 0.45 0.95 0.62 5 

0 LW-05IC LW-05 16 14 18 Com0.1 0.93 0.13 0.15 0.91 0.45 0.95 0.62 5 

0 LW-05SoE LW-05 25 19 35 kappa 0.72 0.50 0.07 0.87 0.44 0.81 0.26 2 

0 LW-05SoE LW-05 25 19 35 TKitMM 0.72 0.50 0.07 0.87 0.44 0.81 0.26 2 

1 LW-05SoE LW-05 14 10 18 OmisComm 0.88 0.31 0.28 0.87 0.25 0.81 0.26 2 

0 LW-05SoE LW-05 10 6 13 Com0.1 0.93 0.12 0.46 0.87 0.19 0.81 0.26 2 

0 LW-06IC LW-06 27 23 32 TKitMM 0.53 0.25 0.18 0.59 0.57 0.88 0.53 5 

0 LW-06IC LW-06 26 23 30 kappa 0.56 0.18 0.20 0.59 0.62 0.88 0.53 5 

1 LW-06IC LW-06 26 23 30 OmisComm 0.56 0.18 0.20 0.59 0.62 0.88 0.53 5 

0 LW-06IC LW-06 16 12 19 Com0.1 0.84 0.10 0.46 0.59 0.40 0.88 0.53 5 

0 LW-07IC LW-07 14 12 18 kappa 0.61 0.31 0.02 0.90 0.72 0.96 0.62 3 

1 LW-07IC LW-07 14 12 17 TKitMM 0.65 0.31 0.03 0.90 0.66 0.96 0.62 3 

0 LW-07IC LW-07 10 7 12 OmisComm 0.92 0.15 0.15 0.90 0.45 0.96 0.62 3 

0 LW-07IC LW-07 9 6 11 Com0.1 0.93 0.08 0.17 0.90 0.46 0.96 0.62 3 

0 LW-07SoE LW-07 20 16 30 kappa 0.57 0.42 0.00 0.90 0.72 0.89 0.54 6 

1 LW-07SoE LW-07 16 13 23 TKitMM 0.70 0.38 0.04 0.90 0.58 0.89 0.54 6 

0 LW-07SoE LW-07 8 6 10 OmisComm 0.93 0.17 0.16 0.90 0.44 0.89 0.54 6 

0 LW-07SoE LW-07 8 6 10 Com0.1 0.94 0.12 0.19 0.90 0.41 0.89 0.54 6 

0 LW-08IC LW-08 25 20 33 kappa 0.51 0.23 0.17 0.58 0.60 0.89 0.57 3 

0 LW-08IC LW-08 25 20 33 TKitMM 0.51 0.23 0.17 0.58 0.60 0.89 0.57 3 

1 LW-08IC LW-08 23 18 29 OmisComm 0.58 0.23 0.21 0.58 0.56 0.89 0.57 3 

0 LW-08IC LW-08 18 12 22 Com0.1 0.73 0.11 0.33 0.58 0.53 0.89 0.57 3 

0 LW-08SoE LW-08 36 10 47 TKitMM 0.79 0.85 0.11 0.87 0.05 0.66 0.04 4 

1 LW-08SoE LW-08 11 4 47 OmisComm 0.87 0.31 0.40 0.87 0.15 0.66 0.04 4 
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Select dset typology Bound lcl ucl measure threshold commission omission Prev kappa Auc pseudo.r2 Ncountries 

0 LW-08SoE LW-08 9 4 47 kappa 0.88 0.15 0.48 0.87 0.17 0.66 0.04 4 

0 LW-08SoE LW-08 6 4 25 Com0.1 0.90 0.08 0.61 0.87 0.12 0.66 0.04 4 

0 LW-13IC LW-13 41 30 65 kappa 0.58 0.32 0.07 0.71 0.63 0.82 0.36 4 

0 LW-13IC LW-13 37 27 56 TKitMM 0.62 0.32 0.15 0.71 0.53 0.82 0.36 4 

1 LW-13IC LW-13 29 19 41 OmisComm 0.72 0.27 0.28 0.71 0.40 0.82 0.36 4 

0 LW-13IC LW-13 17 8 25 Com0.1 0.87 0.09 0.52 0.71 0.29 0.82 0.36 4 

0 LW-14IC LW-14 58 31 130 kappa 0.65 0.62 0.04 0.86 0.40 0.69 0.15 4 

0 LW-14IC LW-14 38 19 130 TKitMM 0.76 0.62 0.10 0.86 0.27 0.69 0.15 4 

1 LW-14IC LW-14 23 1 61 OmisComm 0.86 0.25 0.39 0.86 0.19 0.69 0.15 4 

0 LW-14IC LW-14 9 1 19 Com0.1 0.95 0.00 0.84 0.86 0.05 0.69 0.15 4 
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5 Lake total nitrogen boundaries, model results 

5.1 Model performance 

As for the TP models, to assess performance we compared how successful the resulting TN classifications 
were in comparison to the true classification derived from phytoplankton using kappa, a measure of overall 
agreement. The GLM models again generated classifications with an overall higher level of agreement 
(i.e. higher value of kappa) than the BLM models, but with a higher commission (false +ve) rate (Figures 5.1). 
The overall performance of the TN models was slightly worse than for TP with lower kappa values, although 
most of the BLM models were above the 0.21 threshold suggested as an acceptable value (see 2.7). 

 

Figure 5.1. Comparison of mis-classification outcomes using different modelling (GLM and BLM) approaches 
a) value of kappa, b) commission (false+ve) and omission (false -ve) rates. (horizontal dotted line marks 
kappa = 0.21, a suggested level for acceptable accuracy, see 2.7). 

5.2 Selecting appropriate threshold probability thresholds for BLM models 

Table 5.2 details the lake TN values derived from the BLM models applied to data from different lake types, 
together with the mis-classification rates and model fit parameters. For each type four potential measures 
are shown (toolkit mismatch method where false +ve & -ve rates are equal; maximum kappa; omission & 
commission rates are equal, commission rate = 0.1.). The range of probability thresholds for each of these 
criteria, the resulting TN boundary and relative mis-classification rates are shown in Figure 5.2. In most cases 
the selecting either the tool-kit mis-match method or the probability threshold that maximised correct 
classifications (maximum kappa) generated the lowest probability threshold and thus higher boundary value 
(Figure 5.2ab). However, these measures generated higher commission (false +ve) rates. Given the need to 
establish a relatively precautionary boundary a lower threshold was selected that minimised the commission 
(false +ve) rate, subject to that probability being ≤ 0.9, kappa ≥ 0.9 and omission < double commission rate. 
These values are shown in table 5.1and in figure 5.3. They can be compared with boundary concentrations 
predicted using the other potential probability thresholds in table 5.2. 
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Figure 5.2. Effect of different thershold probability measures on a) the probability threshold, b) predicted TN 

boundary values, c) mis-classification rates (commission false +ve, omission false -ve). 

 

Figure 5.3. Predicted total nitrogen boundary values for rivers by broad type using models fitted to data 

from all available countries, compared to upper and lower quartiles of MS boundary values (grey shading) 
and estimated pan-European boundary values reported by (Nikolaidis et al. 2021) (yellow shading). (Vertical 
lines show 95% confidence limits). 
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5.3 Lake TN boundary values 

The predicted good moderate boundary values varied from 0.2 - 1.4 mgL-1. The differences between types 
were smaller than for the TP boundaries, but the pattern was similar. The highest values occurred in the 
lowland calcareous very shallow lakes (LW-04), followed by the lowland calcareous shallow stratified lakes 
(LW-03), with the lowest found in the lowland siliceous (LW-02) and mid-altitude siliceous (LW07) lakes. As 
for the TP boundaries the range of the TN predicted boundary values was generally similar to the inter 
quartile range of the values reported by Member States (grey shaded area in Figure 5.3). 

5.3.1 Effect of model used 

Predictions using the continuous GLM model were in most, but not all, cases higher than those made using 
the binary logistic models (Figures 5.3) with values often exceeding the interquartile range of MS boundary 
values. 

The differences between the boundaries predicted using the measures used to determine probability cut 
thresholds for the discrete binary models was smaller (Figure 5.2b), but as for TP higher boundaries were 
predicted when the maximum of kappa was used in comparison to the equivalence of omission and 
commission. 

5.3.2 Importance of data set used 

5.3.2.1 Representativeness 

As was the case for TP the boundary values there was no evidence any bias resulting from the different data 
sets (Figure 5.5). The WFD data set was the smallest and only had sufficient data to allow modelling of the 
lowland calcareous lakes (LW-03, LW-04). For TN, although fewer countries reported TN, the IC data set had 
more countries represented in the data sets (Figure 5.4a) than was the case for TP. Both this and the SoE 
data sets were however less balanced with higher prevalence values indicating dominance of records where 
phytoplankton was good or better (Figure 5.4b). 

 

Figure 5.4. Range of a) number of countries in dataset; b) prevalence of the data; c) AUC of data. 
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Figure 5.5. Range of predicted TN good moderate boundary values by lake type and data set. 

5.3.2.2 Regional variation 

The distribution of TN in the two phytoplankton status classes for the three common lowland lake types 
(siliceous LW-02, calcareous stratified LW-03 & calcareous very shallow LW-04) is shown in Figure 5.6. 
Regional differences for TN were less clear than they were for TP. There were only sufficient data to model 
regions separately for of these types (siliceous LW-02 and calcareous stratified LW-03) and for both of these 
there was no significant effect of including region. 
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Figure 5.6. Regional distribution of TN by phytoplankton class overlain by vertical lines showing predicted 

boundary values (± 95% confidence limits) from binomial logistic models. 

5.4 Most likely TN boundary ranges 

The resulting boundary values from each of the data sets are provided in Table 5.1. Using the same approach 
as that used for TP, all of the predicted boundary values from the binary logistic models are presented as box 
plots together with the highest and lowest of the boundary 95% confidence intervals (Figure 5.7). The most 
likely boundary ranges are then indicated by either the interquartile ranges (boxes in Figure 5.7, or where 
these are very small, due to restricted data, the range provided by the 95% confidence limits (blue bars in 
Figure 5.7). 

To place these values into context the range provided by the maximum and minimum values of the 95th 
percentiles are compared with the distribution of TN of the combined data sets and the most recently 
reported MS boundary values (Figure 5.8). 
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Table 5.1. Predicted type specific TN boundary values (mg l-1) derived using binary logistic models, together with key measures from confusion matrix. 

lake type dataset boundary lcl ucl p thresh commission omission kappa AUC pseudo r2 countries 

LW-02 IC 0.6 0.5 0.8 0.83 0.48 0.06 0.38 0.76 0.19 6 

LW-02 SoE 0.5 0.4 0.6 0.87 0.26 0.26 0.30 0.84 0.39 5 

LW-03 IC 0.8 0.7 0.9 0.60 0.26 0.27 0.45 0.79 0.29 12 

LW-03 SoE 1.1 0.9 1.3 0.66 0.18 0.32 0.45 0.77 0.21 8 

LW-03 WFD 1.2 1.0 1.4 0.58 0.35 0.37 0.27 0.70 0.17 11 

LW-04 IC 1.2 1.0 1.3 0.59 0.22 0.22 0.56 0.83 0.40 14 

LW-04 SoE 1.4 1.0 1.8 0.48 0.26 0.33 0.41 0.74 0.24 5 

LW-04 WFD 1.4 1.1 1.8 0.31 0.32 0.33 0.31 0.74 0.19 7 

LW-05 IC 0.6 0.5 0.6 0.81 0.30 0.08 0.51 0.88 0.34 4 

LW-05 SoE 0.4 0.4 0.5 0.89 0.24 0.24 0.33 0.82 0.32 3 

LW-06 IC 0.8 0.6 1.0 0.60 0.35 0.36 0.28 0.72 0.19 4 

LW-07 SoE 0.5 0.4 2.2 0.84 0.73 0.04 0.23 0.75 0.10 3 



 

45 
 

 

 

Figure 5.7. Range of predicted boundary values, overlaid on points showing values coloured by the 

probability threshold measure used, for broad lake types using 3 data sets (IC, SoE, WFD). 
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Figure 5.8. Violin plots showing the range of TN concentrations in lakes split by lake broad types overlain by 
proposed most likely boundary range (vertical red lines) derived from the highest and lowest confidence 
intervals of all predicted values. Grey shading marks interquartile range of Member State reported boundary 
values. 
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Table 5.2. Predicted type specific lake TN boundary values (mg l-1) and key confusion matrix measures derived from binary models using different probability thresholds. 

Select typology Bound lcl ucl measure threshold commission omission Prev kappa Auc pseudo.r2 Ncountries 

0 LW-02 0.9 0.8 1.2 kappa 0.57 0.58 0.01 0.86 0.52 0.84 0.39 5 

0 LW-02 0.7 0.6 0.8 TKitMM 0.73 0.50 0.08 0.86 0.42 0.84 0.39 5 

0 LW-02 0.6 0.5 0.9 TKitMM 0.79 0.70 0.04 0.94 0.27 0.76 0.19 6 

1 LW-02 0.6 0.5 0.8 kappa 0.83 0.48 0.06 0.94 0.38 0.76 0.19 6 

1 LW-02 0.5 0.4 0.6 OmisComm 0.87 0.26 0.26 0.86 0.30 0.84 0.39 5 

0 LW-02 0.4 0.3 0.5 Com0.1 0.93 0.11 0.43 0.86 0.23 0.84 0.39 5 

0 LW-02 0.4 0.3 0.4 OmisComm 0.94 0.35 0.33 0.94 0.11 0.76 0.19 6 

0 LW-02 0.3 0.2 0.4 Com0.1 0.97 0.13 0.60 0.94 0.05 0.76 0.19 6 

0 LW-03 1.5 1.3 1.8 kappa 0.48 0.52 0.16 0.58 0.33 0.70 0.17 11 

0 LW-03 0.9 0.8 1.0 kappa 0.56 0.31 0.21 0.61 0.48 0.79 0.29 12 

0 LW-03 0.9 0.8 1.0 TKitMM 0.56 0.31 0.21 0.61 0.48 0.79 0.29 12 

0 LW-03 1.2 1.0 1.4 TKitMM 0.56 0.41 0.30 0.58 0.29 0.70 0.17 11 

1 LW-03 1.2 1.0 1.4 OmisComm 0.58 0.35 0.37 0.58 0.27 0.70 0.17 11 

0 LW-03 1.2 1.0 1.5 TKitMM 0.59 0.42 0.20 0.66 0.39 0.77 0.21 8 

1 LW-03 0.8 0.7 0.9 OmisComm 0.60 0.26 0.27 0.61 0.45 0.79 0.29 12 

0 LW-03 1.1 0.9 1.3 OmisComm 0.64 0.25 0.28 0.66 0.43 0.77 0.21 8 

1 LW-03 1.1 0.9 1.3 kappa 0.66 0.18 0.32 0.66 0.45 0.77 0.21 8 

0 LW-03 1.0 0.8 1.2 Com0.1 0.70 0.11 0.42 0.66 0.41 0.77 0.21 8 

0 LW-03 0.7 0.5 0.9 Com0.1 0.75 0.11 0.78 0.58 0.10 0.70 0.17 11 

0 LW-03 0.5 0.4 0.6 Com0.1 0.76 0.10 0.55 0.61 0.31 0.79 0.29 12 

0 LW-04 1.6 1.3 2.1 kappa 0.27 0.34 0.20 0.28 0.38 0.74 0.19 7 

1 LW-04 1.4 1.1 1.8 OmisComm 0.31 0.32 0.33 0.28 0.31 0.74 0.19 7 

0 LW-04 1.2 0.9 1.4 TKitMM 0.38 0.22 0.52 0.28 0.26 0.74 0.19 7 

0 LW-04 1.6 1.2 2.1 kappa 0.41 0.28 0.23 0.44 0.48 0.74 0.24 5 

0 LW-04 1.5 1.1 1.9 OmisComm 0.45 0.28 0.26 0.44 0.46 0.74 0.24 5 

1 LW-04 1.4 1.0 1.8 TKitMM 0.48 0.26 0.33 0.44 0.41 0.74 0.24 5 

0 LW-04 0.9 0.6 1.1 Com0.1 0.49 0.10 0.78 0.28 0.14 0.74 0.19 7 
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Select typology Bound lcl ucl measure threshold commission omission Prev kappa Auc pseudo.r2 Ncountries 

0 LW-04 1.3 1.2 1.4 kappa 0.52 0.25 0.17 0.56 0.57 0.83 0.40 14 

0 LW-04 1.2 1.1 1.3 TKitMM 0.56 0.25 0.19 0.56 0.56 0.83 0.40 14 

0 LW-04 1.2 0.8 1.5 Com0.1 0.56 0.10 0.51 0.44 0.40 0.74 0.24 5 

1 LW-04 1.2 1.0 1.3 OmisComm 0.59 0.22 0.22 0.56 0.56 0.83 0.40 14 

0 LW-04 0.9 0.7 1.0 Com0.1 0.76 0.10 0.57 0.56 0.31 0.83 0.40 14 

0 LW-05 0.7 0.6 0.8 kappa 0.59 0.52 0.04 0.87 0.50 0.82 0.32 3 

0 LW-05 0.7 0.6 0.7 TKitMM 0.70 0.50 0.05 0.91 0.45 0.88 0.34 4 

0 LW-05 0.6 0.5 0.7 TKitMM 0.70 0.52 0.08 0.87 0.40 0.82 0.32 3 

1 LW-05 0.6 0.5 0.6 kappa 0.81 0.30 0.08 0.91 0.51 0.88 0.34 4 

1 LW-05 0.4 0.4 0.5 OmisComm 0.89 0.24 0.24 0.87 0.33 0.82 0.32 3 

0 LW-05 0.5 0.4 0.5 OmisComm 0.91 0.20 0.21 0.91 0.32 0.88 0.34 4 

0 LW-05 0.5 0.4 0.5 Com0.1 0.93 0.10 0.26 0.91 0.30 0.88 0.34 4 

0 LW-05 0.4 0.3 0.4 Com0.1 0.94 0.14 0.48 0.87 0.17 0.82 0.32 3 

0 LW-06 0.9 0.7 1.1 TKitMM 0.55 0.49 0.33 0.60 0.18 0.72 0.19 4 

1 LW-06 0.8 0.6 1.0 OmisComm 0.60 0.35 0.36 0.60 0.28 0.72 0.19 4 

0 LW-06 0.6 0.5 0.8 Com0.1 0.69 0.09 0.48 0.60 0.39 0.72 0.19 4 

0 LW-06 0.6 0.4 0.8 kappa 0.70 0.02 0.49 0.60 0.44 0.72 0.19 4 

0 LW-07 0.7 0.5 5.0 kappa 0.75 0.73 0.01 0.94 0.38 0.75 0.10 3 

0 LW-07 0.3 0.3 1.0 kappa 0.77 0.77 0.03 0.90 0.25 0.69 0.12 3 

0 LW-07 0.3 0.3 0.7 TKitMM 0.80 0.77 0.08 0.90 0.16 0.69 0.12 3 

1 LW-07 0.5 0.4 2.2 TKitMM 0.84 0.73 0.04 0.94 0.23 0.75 0.10 3 

1 LW-07 0.2 0.1 0.3 OmisComm 0.90 0.38 0.36 0.90 0.11 0.69 0.12 3 

0 LW-07 0.2 0.1 0.3 Com0.1 0.93 0.08 0.54 0.90 0.12 0.69 0.12 3 

0 LW-07 0.3 0.1 0.4 OmisComm 0.94 0.36 0.24 0.94 0.14 0.75 0.10 3 

0 LW-07 0.2 0.0 0.3 Com0.1 0.97 0.09 0.65 0.94 0.04 0.75 0.10 3 
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6 Comparison of lake TP & TN boundary values 

The range of proposed boundary values for TP and TN are shown in Figure 6.1, by lines joining the lower and 
upper proposed TP and TN boundaries. Clearly the TN and TP boundaries are related to each other and given that 
they lie above the line where the N:P ratio suggests P limitation it suggests that the TN boundary is unlikely to 
control status, indicating the greater importance of the TP boundary values for these lake types. 

 

Figure 6.1. Comparison of modelled boundary values for different lake types. Lines mark the upper and lower 
values of the most likely boundaries. Dotted lines show N:P rations where N, P or co N&P limitation may occur: 
<16 molar ratio N limitation, >53 molar ratio P limitation (Ptacnik et al. 2010). 

Table 6.1 summarises the results of the modelling providing a type specific median boundary value derived from 
all models together with a typical range of values based on the highest and lowest 95% confidence limits of the 
predicted values. 
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Table 6.1. Summary of type specific lake TP and TN boundary values, derived from the range of confidence 

limits of predicted boundary values using binary logistic models. 

 TP (ugL-1) TN (mgL-1) 

typology median  range median  range 

LA-04 lowland-mid altitude, organic & siliceous 19 11-24   

LW-02 lowland, siliceous 14 7-25 0.6 0.43-0.76 

LW-03 lowland, calcareous 28 10-69 1.1 0.73-1.37 

LW-04 lowland, calcareous, v shallow 60 36-92 1.4 1.02-1.77 

LW-05 lowland, organic & siliceous 18 10-24 0.5 0.37-0.64 

LW-06 lowland, organic & calcareous 26 23-30 0.8 0.62-0.97 

LW-07 mid-altitude, siliceous 15 12-23 0.4 0.14-2.22 

LW-08 mid-altitude, calcareous 23 18-29   

LW-13 Mediterranean, siliceous 29 19-41   

LW-14 Mediterranean, calcareous 23 1-61   
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7 River total phosphorus boundaries 

7.1 Data 

To investigate the potential range of river TP boundary values for European rivers data from the EEA were 
collated. Normalised biology EQR values were linked to summary TP data (annual means matched to biological 
data collected in the same year) from the nearest water quality site using spatial coordinates and by reference to 
their WFD water bodies. To determine TP boundary values binary logistic models were fitted using the status of 
phytobenthos, determined by categorising EQR values into two binary categories (NEQR ≥ 0.6 good or better = 1, 
NEQR < 0.6 moderate or worse = 0). Only EQR marked as sensitive to eutrophication or general degradation were 
used. Phytobenthos was used as it was the most frequently reported biological metric and has been shown to 
have the best relationship to TP. (A document / section is in preparation on BRT (Boosted Regression Trees) 
models and SEM (structural equation modeling) analysis regarding this). An additional national data set was 
made available by NO and this was incorporated into the analysis. All sites were related to the EU broad typology 
(Lyche Solheim, 2019) using their spatial locations and a GIS map layer to facilitate a type specific analysis. 

The data set contained records for 18 countries although not all had TP data available. The distribution of TP 
data in the two biological status categories is shown in Figure 7.1, note the values are scaled to proportion, thus 
the size of the two peaks does not reflect the relative numbers of records in each class (prevalence). They provide 
an overview of the data, the range and the degree of overlap of TP concentrations and show clear differences 
between countries. This reflects differences in both typology and pressure and highlights the need to determine 
type specific boundaries. However, it also reflects conclusions from previous analysis that demonstrated that 
country was a more significant explanatory variable than river type. Additionally, it is clear that there are only 
marginal differences in the TP distributions for some countries, suggesting that in these countries the 
phytobenthos metric is not sufficiently responsive to TP. An example is PL, but similar poor separation is evident 
for EE, IT and LT. 
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Figure 7.1. Density distribution and box plots showing the range of total phosphorus concentration in sites 

classified biologically into good or better and moderate or poor status for all rivers by country (data set SoE). 

 

Figure 7.2 provides a similar plot but split by the broad typology for types with sufficient data in both biotic class. 
It illustrates that overlap is high in many types and thus potential difficulties fitting significant models. 
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Figure 7.2. Density distribution and box plots showing the range of total phosphorus concentration in sites 

classified biologically into good or better and moderate or poor status for all rivers by broad type. (data set SoE). 

7.2  Approach to modelling 

The initial examination of the data showed that for some countries there were only marginal differences between 
the TP distributions in the good and not good biotic classes. Thus, BLM models were fitted to the country specific 
data sets for all countries with sufficient data (𝑁 ≥ 10 for each binary biological category) to identify countries 
where model fit was inadequate (AUC < 0.7, pseudo r2 <0.15). These countries were excluded from subsequent 
model runs. The data were then split into groups based on the EU broad typology by altitude (lowland, mid-
altitude, highland) and geology (calcareous, siliceous). Within each of these groups the data were tabulated by 
type and the distributions of TP examined using box plots to assess relative country and type specific differences 
and to determine whether there were sufficient data for national or regional models. Where data were sufficient, 
BLM models that included categorical variables for type and region were then fitted to identify whether types 
could be combined (e.g., small and large rivers) and whether regional differences could be identified. A final set 
of models were then run on those types/regions with sufficient data, including for some types a grouping referred 
to as not Northern (notN) comprising all countries not in the Northern region. From the output of each model a 
confusion matrix was created, the key comparative measures were calculated and the optimum probability 
threshold identified and used to determine the predicted boundary and confidence limit values. 
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7.3  Model results 

Full details for each river type are available in a separate document (html file), as only summary details are 
provided here. 

7.3.1 Model performance 

The AUC values for all of the models fitted to data split by country and/or river type are shown in Figure 7.3 
There were sufficient data to run national models for 11 countries (AT, BE, BG, FR, HR, IT, LT, NO, PL, SE, UK). Of 
these, LT, PL had poor model performance. For the national type specific data sets models fitted to data from 6 
countries (AT, BE, HR, NO, SE, UK) all had adequate performance. Those from 4 countries (BG, FR, IT, PL) were 
more variable, while no models from LT were adequate. Thus, data from LT was excluded from all models and 
those from PL for all models except for the mid-altitude rivers where the PL data performed well. 

Using data from all countries models could be fitted to the majority of river types, but only a minority of types 
could be run by region. For example, in the northern region there were insufficient impacted records, and for 
Alpine and Eastern regions too few records or only records from a single country and thus not representative. 
Where all available data (excluding countries considered to have inadequate separation of TP) were used all but 
one model (very large rivers) met the performance criteria of an AUC > 0.7. Similarly, the majority of the regional 
data sets performed adequately. 

 

Figure 7.3. AUC values for all river models for different subsets of river data. 

7.3.2 Selecting appropriate threshold probability values. 

Table 7.1a (at the end of this document) shows the river TP boundary values derived from the BLM models 
applied to data from all countries, together with details of the mis-classification rates (omission, commission) 
and model fit parameters. For each river type four potential boundary values are shown, each derived using 
different threshold probability values (for maximum kappa, omission = commission,commission = 0.2 and 
commission = 0.1). In all cases selecting the probability threshold that maximised correct classifications 
(maximum kappa) generated the lowest probability threshold and thus highest boundary value (Figure 7.4ab, 
Table 7.1a). However, apart from the mid-altitude calcareous rivers, using this threshold generated much higher 
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commission (false +ve) than omission (false -ve) rates (Figure 7.4c). Thus, a boundary predicted using this 
probability threshold could result in relatively large number of sites being incorrectly classed as good according to 
TP and thus be less suitable as an indicative pan-European boundary. Thus, a higher probability threshold was 
selected using the protocol outlined in the introduction and methods document (see folder for this document). 
This resulted in lower TP boundary concentrations with commission rates ranging from 0.1-0.37 and with one 
exception kappa values > the suggested threshold of 0.21 (Table 7.1b). 

 

Figure 7.4. Effect of different threshold probability measures on a) the probability threshold, b) predicted TP 

boundary values, c) mis-classification rates (commission false +ve, omission false -ve). 

7.4  Boundary values 

7.4.1 Pan-European values 

The modeled boundary determined using the selected probability thresholds using data from all available 
countries are shown in Figure 7.5 and in Table 7.1 (further details of mis-classification rates for these models are 
shown in tables at the end of this chapter).  The highest boundary values were found for the very large (69-110 
ugL-1) and calcareous rivers (63-73 ugL-1) and the lowest were for highland and glacial rivers (19-40 ugL-1). As 
expected, the lowland clear siliceous rivers had lower values (40-57 ugL-1) than the calcareous rivers. The 
siliceous and calcareous humic rivers had higher boundaries (siliceous humic: 68-89 ugL-1, calcareous humic: 75-
120 ugL-1) than the clear ones, perhaps due to lower availability of phosphorus. However, there was no significant 
difference between clear and humic types for siliceous or calcareous mid-altitude rivers. The majority of the 
predicted boundaries fall within the interquartile ranges of the reported boundary values (Kelly, 2022) (grey 
shading Figure 7.5), the exceptions being for lowland calcareous humic, highland/glacial and Mediterranean river 
types. For the latter two types predicted values were lower, but within the range reported by (Nikolaidis, 2021) 
(yellow shading Figure 7.5), an estimate based on modelling these reported values. 
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Figure 7.5. Predicted total phosphorus boundary values for rivers by broad type using models fitted to data from 

all available countries, compared to upper and lower quartiles of MS boundary values (grey shading) and 
estimated pan-European boundary values reported by (Nikolaidis, 2021) (yellow shading). (Vertical lines show 
confidence limits). 
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Table 7.1. Predicted type specific pan-European TP boundary values using selected critical p threshold values 

using binary logistic models fitted to data from all countries. 

river type boundary lcl ucl p thresh. measure AUC pseudo r2 countries 

very large 91 69 110 0.82 OmisComm 0.78 0.27 10 

lowland siliceous clear 49 40 57 0.82 Com0.2 0.83 0.31 11 

lowland siliceous humic 77 68 89 0.48 OmisComm 0.90 0.60 9 

lowland calcareous clear 66 63 73 0.76 Com0.2 0.75 0.24 10 

lowland calcareous humic 96 75 120 0.61 Com0.2 0.85 0.47 7 

mid-altitude siliceous & organic 64 57 71 0.68 OmisComm 0.90 0.55 12 

mid-altitude calcareous & 
organic 

78 66 87 0.61 kappa 0.81 0.36 10 

highland & glacial 23 14 31 0.90 OmisComm 0.80 0.26 7 

Mediterranean 29 19 40 0.81 OmisComm 0.73 0.21 5 

7.4.2 Regional values 

There were insufficient data to fit models to regional sub-sets of data for all river types. Predicted boundary 
values from models that could be fitted are shown in Figure 7.6 and Table 7.2 (at end document) In most cases 
boundaries from countries in the central region of Europe were higher than those predicted from all countries 
data, while they were lower for the northern region. Although the extent of the difference depended on the 
proportions of countries from each region that were included in the all country data set. The biggest difference 
was for lowland siliceous rivers, where the northern region boundary values were much lower (25-41 ugL-1) than 
those from other regions (52-102 ugL-1). This difference may reflect the relatively high proportion (75%) of 
norther region records from NO for this river type. The distribution of TP in sites classified by phytobenthos 
clearly differed between countries and where there were sufficient data models fitted to individual countries data 
revealed considerable variation, with higher values for BE, BG and PL and low values for NO (Figure 7.7). All these 
country models had adequate fits (AUC >0.7) and it is clear that there are significant country specific differences. 
This is investigated in more detail in the following sections. 
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Figure 7.6. Predicted total phosphorus boundary values for rivers by broad type using models fitted to data from 

all available countries and for different regions, compared to upper and lower quartiles of MS boundary values 
(grey shading) and estimated regional boundary values reported by (Nikolaidis, 2021) (central=green, 
Baltic=purple, Scandinavian=red shading). (lines show confidence limits). 
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Figure 7.7. Predicted total phosphorus boundary values for rivers by broad type using models fitted to data from 

all available countries and for individual countries. (Vertical lines show confidence limits). 

7.4.2.1 Very large rivers 

There were relatively few records from the very large rivers and for this river type the distributions of TP for 
phytobenthos classified as good and not good overlapped substantially (Figure 7.2). The TP distributions by type 
(Figure 7.8) provide some indication that TP in sites classified as good were lower in the Northern region, but 
there were insufficient data to fit regional models. The range of the predicted boundaries taking all the data (69 - 
110 ugL-1, pink shading Figure 7.8) is within the interquartile range of reported MS boundary values (grey shading 
Figure 7.8) and might represent a reasonable estimate of an appropriate boundary range for this river type. 
However, the lower range of TP in good sites from the Northern region suggest that lower values might be more 
appropriate in this region. The Scandinavian regional value estimated by (Nikolaidis, 2021) (37 ugL-1 red 
horizontal line Figure 7.8) is close to the upper tail of the data from FI and provides an indication of a potential 
value. 
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Figure 7.8. Box plots showing range TP values for sites in very large rivers, classified as good or not good using 
phytobenthos by region and country compared to boundary ranges; grey shading shows interquartile range of MS 
reported values; coloured shading shows range predicted using BLM fitted to data from all (pink) countries. 

7.4.2.2 Lowland siliceous rivers 

There was no significant difference between large and small lowland siliceous river models and the distributions 
of TP by country for all the lowland siliceous clear water rivers suggest lower TP ranges in the Northern region. 
This was confirmed by significantly different models for the northern region in comparison to countries from all 
other regions. The range of boundary values predicted using data from all regions other than northern was 52 - 
102 ugL-1, (blue shading Figure 7.9a), in comparison to 25 - 41 ugL-1, (red shading Figure 7.9a). Both these values 
lie within the reported range of MS boundary values (grey shading Figure 7.9a) and are considered reasonable 
estimates of typical boundary values. 

As for the lowland siliceous clear rivers, the TP distributions suggest lower TP in the northern region and this was 
confirmed by modelling. The range of predicted boundary values for the northern regions were (34 - 48 ugL-1 (red 
shading Figure 7.9b), while those predicted using data from all the other regions was 82 - 118 ugL-1 (blue 
shading Figure 7.9b). These and the pan-European average value (68 - 89 ugL-1 pink Figure 7.9b shading) were 
higher than the interquartile range of reported boundary values (grey shading). However, only 4 countries (FI, PL, 
NO, SE) reported boundary values, and thus their interquartile range will reflect the northern region rather than a 
pan-European average. 

Thus, for lowland siliceous rivers the available evidence suggests lower TP boundary values for northern rivers 
and that humic rivers have slightly higher values than clear. 
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Figure 7.9. Box plots showing range TP values for sites in lowland siliceous a) clear & b) humic rivers, classified 
as good or not good using phytobenthos by region and country compared to boundary ranges (grey shading 
shows interquartile range of MS reported values; coloured shading shows range predicted using BLM fitted to 
data from all (pink), all except northern (blue), northern (red) countries. 

7.4.2.3 Lowland calcarerous rivers 

As for siliceous rivers there was no significant effect of river size, so the broad type size categories were 
combined. For the clear water rivers there were sufficient data to model the northern region separately, but 
unlike the siliceous rivers there was no significant difference in the predicted boundary values. For the northern 
region the TP boundary range was 62 - 90 ugL-1 (Figure 7.10a, red shading), while for the other countries it was 
63 - 73 ugL-1 (Figure 7.10a, blue shading). Both values were at the lower end of the interquartile range of the 
reported boundary values (Figure 7.10a, grey shading). 

As for the siliceous rivers the calcareous humic rivers had higher predicted TP boundary values, but like the clear 
rivers no difference between regions. The range of boundary values for the norther region were (77 - 133 ugL-1 
(Figure 7.10b, red shading) and for the other countries (75 - 120 ugL-1 (Figure 7.10b, blue shading). 
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Figure 7.10. Box plots showing range TP values for sites in lowland calcareous a) clear & b) humic rivers, 
classified as good or not good using phytobenthos by region and country compared to boundary ranges (grey 
shading shows interquartile range of MS reported values; coloured shading shows range predicted using BLM 
fitted to data from all (pink), all except northern (blue), northern (red) countries. 

7.4.2.4 Mid-altitude rivers 

For mid-altitude rivers neither size or humic content were significant predictors in the models and models were 
fitted to all siliceous and then all calcareous rivers. For both types there were too few impacted sites to fit 
models to data from the northern region, although the distribution of TP in the good phytobenthos siliceous sites 
was clearly lower than in those from the other regions (Figure 7.11a). The predicted boundary ranges for sites in 
the central region were similar for both siliceous and calcareous rivers siliceous: 62 - 76 ugL-1 (Figure 7.11a, blue 
shading). calcareous: 73 - 101 ugL-1 (Figure 7.11a, blue shading). There were sufficient data to model the alpine 
regions separately for the calcareous sites, although the relatively small data set generated a relatively large 
range, which was similar to the central values: 15 - 90 ugL-1 (Figure 7.11a, blue shading). For the central regions 
(Nikolaidis, 2021) estimated a boundary range of 70-93 like the values derived from the models. Their estimated 
boundary values for the northern regions were lower 6-18 and might represent a more appropriate value. 
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Figure 7.11. Box plots showing range TP values for sites in mid-altitude clear & humic a) siliceous & b) 
calcareous rivers, classified as good or not good using phytobenthos by region and country compared to 
boundary ranges (grey shading shows interquartile range of MS reported values; coloured shading shows range 
predicted using BLM fitted to data from all (pink), central (green), alpine (purple) countries and yellow shading 
values for the Scandinavian region estimated by (Nikolaidis, 2021). 

7.4.2.5 Highland/glacial and Mediterranean rivers 

There were too few data to allow for regional models for these river types. For the highland/glacial type the 
model using all available data was dominated by sites from FR, the predicted boundary was lower than the 
interquartile range of the reported MS boundaries (Figure 7.12a grey shading) but is potentially representative of 
sites other than from the northern region siliceous: 14 - 31 ugL-1 (Figure 7.12a, pink shading). Sites from NO, the 
only country with data in the northern region had much lower TP distributions in the good status sites, but the 
absence of impacted sites prevented modelling. The boundary values reported by (Nikolaidis, 2021) northern (6-8 
ugL-1) could be an appropriate estimate, although their values for central were higher than the modeled values 
(27-55 ugL-1) 

For the Mediterranean rivers, the predicted boundary range 19 - 40 ugL-1 (Figure 7.12b, pink shading) is lower 
than the interquartile range of the reported MS boundaries (Figure 7.12b grey shading). However, it is similar to 
the values reported by (Nikolaidis, 2021) (21-41 ugL-1). 
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Figure 7.12. Box plots showing range TP values for sites in a) highland/glacial & b) Mediterranean rivers 
classified as good or not good using phytobenthos by region and country compared to boundary ranges; grey 
shading shows interquartile range of MS reported values; coloured shading shows range predicted using BLM 
fitted to data from all (pink) countries and yellow shading values for the Scandinavian region estimated by 
(Nikolaidis, 2021). (note scale difference between a and b). 

7.5  Conclusions 

• When using statistical models to establish supporting element boundary values consideration should be 
given to the overall level of mis-classification and whether it is appropriate to minimise the false 
positive rate in order to provide for sufficiently precautionary boundaries. 

• Using the currently available data it is very challenging to establish objective total phosphorus boundary 
values. Firstly, substantial country specific differences were found. Given that these differences resulted 
from models with adequate fits and that they were based on relationships with the status of an inter-
calibrated metric (phytobenthos) these differences remain unexplained. 

• However, by using data from all available countries (where modelling demonstrated an adequate 
relationship with pressure) with type specific models boundary values for any river type are most likely 
to be less than 100 ugL-1. 

• There were insufficient data to clarify regional differences, but the indications are that boundaries for 
Northern regions are likely to be lower than those in other areas of Europe. 

• Further work is needed to determine what factors might explain country specific differences. 

• A set of our best estimate of type specific boundary ranges derived where possible from the modelling 
described in this report, supplemented by those reported by (Nikolaidis, 2021) is given in Table 7.2. The 
values are compared to those reported by MS and summarised in (Kelly, 2022). 
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Table 7.2. Best available estimate of type specific TP boundary values for rivers, derived where possible from 
binary logistic models (BLM) reported here, or where insufficient data from GAM models fitted to reported MS 
boundary values (Nikolaidis, 2021). 

river type boundary source 
boundary 
northern source 

range 
reported 

very large 69-110 BLM 36-38 (Nikolaidis, 
2021) 

34-250 

lowland siliceous clear 52-102 BLM 25-41 BLM 21-300 

lowland siliceous humic 82-118 BLM 34-48 BLM 21-44 

lowland calcareous clear 63-83 BLM 62-90 BLM 74-200 

lowland calcareous humic 77-133 BLM 49-51 (Nikolaidis, 
2021) 

 

mid-altitude siliceous & 
organic 

62-76 BLM 6-18 (Nikolaidis, 
2021) 

16-162 

mid-altitude calcareous & 
organic 

73-101 BLM 8-40 (Nikolaidis, 
2021) 

40-300 

highland & glacial 13-31 BLM 6-8 (Nikolaidis, 
2021) 

24-250 

Mediterranean 19-40 BLM   60-500 

 

       

7.6 Tables of results 
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Table 7.3. Predicted type specific pan-European TP boundary values and with key measures from confusion matrix, using binary logistic models fitted to data from all 

countries. 

river type boundary lcl ucl measure p thresh. commission omission prev. kappa AUC pseudo r2 countries 

very large 91 69 110 OmisComm 0.82 0.33 0.32 0.80 0.26 0.78 0.27 10 

lowland siliceous clear 49 40 57 Com0.2 0.82 0.19 0.30 0.81 0.36 0.83 0.31 11 

lowland siliceous humic 77 68 89 OmisComm 0.48 0.16 0.17 0.51 0.67 0.90 0.60 9 

lowland calcareous clear 66 63 73 Com0.2 0.76 0.22 0.42 0.70 0.29 0.75 0.24 10 

lowland calcareous humic 96 75 120 Com0.2 0.61 0.19 0.24 0.55 0.56 0.85 0.47 7 

mid-altitude siliceous & organic 64 57 71 OmisComm 0.68 0.18 0.18 0.73 0.59 0.90 0.55 12 

mid-altitude calcareous & organic 78 66 87 kappa 0.61 0.18 0.30 0.57 0.51 0.81 0.36 10 

highland & glacial 23 14 31 OmisComm 0.90 0.33 0.31 0.87 0.20 0.80 0.26 7 

Mediterranean 29 19 40 OmisComm 0.81 0.35 0.36 0.77 0.23 0.73 0.21 5 
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Table 7.4. Predicted type specific pan-European TP boundary values using all potential critical p threshold values and key measures from confusion matrix, using binary 

logistic models fitted to data from all countries. 

Select typology_names_of Bound lcl ucl measure threshold commission omission Prev kappa 

0 very large 140 116 184 kappa 0.65 0.538 0.084 0.80 0.41 

1 very large 91 69 110 OmisComm 0.82 0.333 0.318 0.80 0.26 

0 very large 79 57 96 Com0.2 0.86 0.179 0.474 0.80 0.21 

0 very large 75 53 93 Com0.1 0.87 0.103 0.494 0.80 0.24 

0 lowland siliceous clear 85 74 102 kappa 0.72 0.381 0.153 0.81 0.42 

0 lowland siliceous clear 55 46 69 OmisComm 0.80 0.249 0.263 0.81 0.36 

1 lowland siliceous clear 49 40 57 Com0.2 0.82 0.188 0.302 0.81 0.36 

0 lowland siliceous clear 33 24 40 Com0.1 0.87 0.091 0.419 0.81 0.29 

0 lowland siliceous humic 84 73 98 Com0.2 0.44 0.198 0.138 0.51 0.66 

0 lowland siliceous humic 80 71 93 kappa 0.46 0.172 0.148 0.51 0.68 

1 lowland siliceous humic 77 68 89 OmisComm 0.48 0.161 0.168 0.51 0.67 

0 lowland siliceous humic 66 57 75 Com0.1 0.56 0.104 0.230 0.51 0.67 

0 lowland calcareous clear 86 73 94 kappa 0.69 0.388 0.271 0.70 0.32 

0 lowland calcareous clear 77 73 83 OmisComm 0.72 0.321 0.340 0.70 0.30 

1 lowland calcareous clear 66 63 73 Com0.2 0.76 0.215 0.424 0.70 0.29 

0 lowland calcareous clear 50 42 52 Com0.1 0.82 0.103 0.606 0.70 0.21 

0 lowland calcareous humic 103 82 129 kappa 0.58 0.209 0.220 0.55 0.57 

0 lowland calcareous humic 103 82 129 OmisComm 0.58 0.209 0.220 0.55 0.57 

1 lowland calcareous humic 96 75 120 Com0.2 0.61 0.194 0.244 0.55 0.56 
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Select typology_names_of Bound lcl ucl measure threshold commission omission Prev kappa 

0 lowland calcareous humic 70 50 88 Com0.1 0.74 0.104 0.341 0.55 0.54 

0 mid-altitude siliceous & organic 67 62 76 kappa 0.66 0.199 0.156 0.73 0.60 

0 mid-altitude siliceous & organic 67 62 76 Com0.2 0.66 0.199 0.156 0.73 0.60 

1 mid-altitude siliceous & organic 64 57 71 OmisComm 0.68 0.176 0.175 0.73 0.59 

0 mid-altitude siliceous & organic 55 48 62 Com0.1 0.74 0.096 0.243 0.73 0.56 

0 mid-altitude calcareous & organic 93 80 109 OmisComm 0.55 0.254 0.246 0.57 0.50 

0 mid-altitude calcareous & organic 83 73 94 Com0.2 0.59 0.195 0.291 0.57 0.50 

1 mid-altitude calcareous & organic 78 66 87 kappa 0.61 0.178 0.301 0.57 0.51 

0 mid-altitude calcareous & organic 49 37 58 Com0.1 0.75 0.101 0.516 0.57 0.36 

0 highland & glacial 60 44 100 kappa 0.71 0.533 0.048 0.87 0.46 

1 highland & glacial 23 14 31 OmisComm 0.90 0.333 0.309 0.87 0.20 

0 highland & glacial 21 12 29 Com0.2 0.91 0.300 0.353 0.87 0.18 

0 highland & glacial 19 10 27 Com0.1 0.92 0.100 0.517 0.87 0.15 

0 Mediterranean 53 40 76 kappa 0.71 0.474 0.146 0.77 0.38 

1 Mediterranean 29 19 40 OmisComm 0.81 0.346 0.358 0.77 0.23 

0 Mediterranean 21 14 29 Com0.2 0.85 0.205 0.429 0.77 0.26 

0 Mediterranean 16 9 22 Com0.1 0.88 0.090 0.791 0.77 0.06 
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Table 7.5. Predicted type specific TP boundary values, with with key measures from confusion matrix, for all available regional data sets in comparison to all countries 

(pan-European). 

region river type boundary lcl ucl commission omission prev. kappa AUC pseudo r2 countries measure p thresh. 

All very large 91 69 110 0.33 0.32 0.80 0.26 0.78 0.27 10 OmisComm 0.82 

All lowland siliceous clear 49 40 57 0.19 0.30 0.81 0.36 0.83 0.31 11 Com0.2 0.82 

C lowland siliceous clear 86 57 114 0.32 0.40 0.68 0.25 0.68 0.13 4 kappa 0.70 

N lowland siliceous clear 33 25 41 0.24 0.22 0.92 0.26 0.88 0.32 4 OmisComm 0.90 

notN lowland siliceous clear 77 52 102 0.30 0.41 0.66 0.26 0.68 0.13 8 kappa 0.70 

All lowland siliceous humic 77 68 89 0.16 0.17 0.51 0.67 0.90 0.60 9 OmisComm 0.48 

C lowland siliceous humic 98 82 118 0.20 0.27 0.29 0.50 0.83 0.38 4 Com0.2 0.37 

N lowland siliceous humic 41 34 48 0.09 0.13 0.79 0.69 0.95 0.65 4 Com0.1 0.73 

notN lowland siliceous humic 99 82 118 0.20 0.30 0.31 0.48 0.82 0.35 6 Com0.2 0.39 

All lowland calcareous clear 66 63 73 0.22 0.42 0.70 0.29 0.75 0.24 10 Com0.2 0.76 

C lowland calcareous clear 76 63 83 0.35 0.39 0.80 0.18 0.70 0.16 5 OmisComm 0.82 

E lowland calcareous clear 176 92 308 0.31 0.31 0.45 0.38 0.69 0.08 1 OmisComm 0.44 

N lowland calcareous clear 76 62 90 0.20 0.34 0.67 0.41 0.77 0.24 2 Com0.2 0.71 

notN lowland calcareous clear 76 63 83 0.35 0.34 0.71 0.26 0.74 0.24 9 OmisComm 0.73 

All lowland calcareous humic 96 75 120 0.19 0.24 0.55 0.56 0.85 0.47 7 Com0.2 0.61 

C lowland calcareous humic 95 73 120 0.21 0.32 0.54 0.47 0.83 0.44 5 Com0.2 0.62 

notN lowland calcareous humic 103 77 133 0.19 0.26 0.50 0.56 0.86 0.48 6 kappa 0.57 

All mid-altitude siliceous & organic 64 57 71 0.18 0.18 0.73 0.59 0.90 0.55 12 OmisComm 0.68 

C mid-altitude siliceous & organic 68 62 76 0.21 0.31 0.56 0.48 0.82 0.39 4 Com0.2 0.63 

E mid-altitude siliceous & organic 104 80 147 0.20 0.18 0.52 0.62 0.89 0.59 1 OmisComm 0.50 

A mid-altitude calcareous & organic 45 15 90 0.33 0.37 0.80 0.21 0.71 0.15 3 OmisComm 0.79 

All mid-altitude calcareous & organic 78 66 87 0.18 0.30 0.57 0.51 0.81 0.36 10 kappa 0.61 

C mid-altitude calcareous & organic 88 73 101 0.20 0.31 0.54 0.49 0.80 0.34 5 Com0.2 0.56 
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region river type boundary lcl ucl commission omission prev. kappa AUC pseudo r2 countries measure p thresh. 

All highland & glacial 23 14 31 0.33 0.31 0.87 0.20 0.80 0.26 7 OmisComm 0.90 

C highland & glacial 23 13 31 0.36 0.35 0.82 0.19 0.75 0.22 2 OmisComm 0.87 

All Mediterranean 29 19 40 0.35 0.36 0.77 0.23 0.73 0.21 5 OmisComm 0.81 
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Table 7.6. Predicted type specific TP boundary values, with with key measures from confusion matrix, for selected national data sets in comparison to all countries (pan-

European). 

region river type boundary lcl ucl commission omission prev. kappa AUC pseudo r2 measure p thresh. 

All very large 91 69 110 0.33 0.32 0.80 0.26 0.78 0.27 OmisComm 0.82 

BE very large 149 78 190 0.22 0.22 0.78 0.47 0.88 0.48 OmisComm 0.82 

BE lowland siliceous 286 232 351 0.20 0.22 0.64 0.56 0.86 0.45 Com0.2 0.57 

BG lowland siliceous 103 54 278 0.09 0.17 0.52 0.74 0.88 0.49 Com0.1 0.47 

FR lowland siliceous 80 68 93 0.22 0.37 0.39 0.42 0.77 0.26 kappa 0.44 

UK lowland siliceous 83 67 107 0.44 0.05 0.95 0.41 0.92 0.34 kappa 0.83 

All lowland siliceous clear 49 40 57 0.19 0.30 0.81 0.36 0.83 0.31 Com0.2 0.82 

BE lowland siliceous clear 182 119 238 0.21 0.38 0.73 0.32 0.84 0.38 Com0.2 0.79 

BG lowland siliceous clear 103 54 278 0.09 0.17 0.52 0.74 0.88 0.49 Com0.1 0.47 

UK lowland siliceous clear 65 50 85 0.29 0.11 0.94 0.35 0.90 0.29 kappa 0.89 

All lowland siliceous humic 77 68 89 0.16 0.17 0.51 0.67 0.90 0.60 OmisComm 0.48 

FR lowland siliceous humic 96 77 115 0.21 0.30 0.26 0.45 0.80 0.28 Com0.2 0.34 

BE lowland calcareous 191 165 227 0.18 0.19 0.39 0.62 0.89 0.54 Com0.2 0.42 

UK lowland calcareous 83 69 97 0.22 0.34 0.66 0.39 0.78 0.28 Com0.2 0.69 

All lowland calcareous clear 81 73 94 0.37 0.34 0.78 0.23 0.72 0.17 OmisComm 0.79 

BE lowland calcareous clear 175 135 227 0.10 0.18 0.50 0.72 0.86 0.48 Com0.1 0.53 

UK lowland calcareous clear 91 75 108 0.31 0.31 0.65 0.36 0.77 0.27 OmisComm 0.65 

All lowland calcareous humic 101 82 124 0.24 0.23 0.58 0.53 0.82 0.42 OmisComm 0.61 

All mid-altitude siliceous & organic 64 57 71 0.18 0.18 0.73 0.59 0.90 0.55 OmisComm 0.68 

BE mid-altitude siliceous & organic 72 45 100 0.08 0.14 0.85 0.59 0.95 0.47 Com0.1 0.88 

BG mid-altitude siliceous & organic 104 80 147 0.20 0.18 0.52 0.62 0.89 0.59 OmisComm 0.50 
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region river type boundary lcl ucl commission omission prev. kappa AUC pseudo r2 measure p thresh. 

FR mid-altitude siliceous & organic 57 48 67 0.20 0.38 0.57 0.40 0.79 0.32 Com0.2 0.63 

PL mid-altitude siliceous & organic 82 66 94 0.17 0.33 0.45 0.51 0.82 0.41 kappa 0.55 

All mid-altitude calcareous & organic 78 66 87 0.18 0.30 0.57 0.51 0.81 0.36 kappa 0.61 

AT mid-altitude calcareous & organic 45 10 78 0.22 0.33 0.82 0.29 0.76 0.24 Com0.2 0.84 

FR mid-altitude calcareous & organic 52 37 70 0.28 0.28 0.65 0.42 0.77 0.28 OmisComm 0.65 

PL mid-altitude calcareous & organic 114 94 137 0.20 0.34 0.47 0.45 0.80 0.33 Com0.2 0.49 

All highland & glacial 23 14 31 0.33 0.31 0.87 0.20 0.80 0.26 OmisComm 0.90 

FR highland & glacial 23 13 31 0.36 0.34 0.82 0.20 0.75 0.22 OmisComm 0.87 

All Mediterranean 29 19 40 0.35 0.36 0.77 0.23 0.73 0.21 OmisComm 0.81 

FR Mediterranean 22 13 31 0.24 0.32 0.74 0.37 0.72 0.15 Com0.2 0.80 

IT Mediterranean 64 29 104 0.23 0.22 0.79 0.45 0.86 0.47 OmisComm 0.85 
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List of abbreviations and definitions  

%sat   Percent oxygen saturation” 

AA   Annual Average 

AUC   Area Under Curve 

ANC   Acid Neutralising Capacity  

BOD   Biochemical Oxygen Demand 

Boundary A threshold comprising a numeric value of a parameter (e.g.  “1000 µS cm-1 conductivity”, or 
0.7 probability). 

BQE   Biological Quality Element  

CCC   Criteria Continuous Concentration  

CDOM   Coloured Dissolved Organic Matter 

Chla   chlorophyll a  

CIS   Common Implementation Strategy  

CMC   Criteria Maximum Concentration 

Criteria Criteria comprise an appropriate parameter (e.g. “conductivity”), metric (e.g. “annual mean”) 
and threshold (e.g. “1000 µS cm-1”) 

CW   Coastal Waters  

DO   Dissolved Oxygen  

DOC   Dissolved Organic Carbon  

EA   East Atlantic 

ECOSTAT  A working group dedicated to the ecological status of surface water bodies within 
implementation of the Water Framework Directive that was set up in November 2002. 

EEA   European Environment Agency 

EQR   Ecological Quality Ratio  

EU   European Union  

FNU   Formazin Nephelometric Units 

G20 An intergovernmental forum comprising 19 sovereign countries, the European Union and the 
African Union 

GES   Good Ecological Status  

GIG   Geographical Intercalibration Group  

G/M   Good status/Moderate status boundary  

Helcom   Helsinki Commission (Baltic marine environment protection commission)  

H/G   High status/Good status boundary  

IC   Intercalibration  

lcl   Lower Confidence Interval  

ICP  Waters International Cooperative Programme on assessment and monitoring of the effects 
of air pollution on rivers and lakes. 

MAC   Maximum Allowable Concentration 

M/P   Moderate status/Poor status boundary  

MSFD   Marine Strategy Framework Directive  

NAO   North Atlantic Oscillation 
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NEA   North-East Atlantic  

NTU   Nephelometric Turbidity Units  

nEQR   Normalised EQR  

OSPAR   Oslo-Paris Convention (Convention for the Protection of the Marine Environment of the North 
East Atlantic)  

P/B   Poor status/Bad status boundary  

PAR   Photosynthetically Available Radiation 

PSU   Practical Salinity Units 

SA   Seasonal Average 

ucl    upper confidence interval 

SE   Supporting Elements 

SoE   State of Environment 

SS   Suspended Solids 

SSD   Species Sensitivity Distributions 

TDS   Total Dissolved Solids  

Threshold   A numeric value representing a boundary of a parameter (e.g.  “1000 µS cm-1 conductivity”, 
or 0.7 probability). 

TN   Total Nitrogen  

TP   Total Phosphorus  

TRAC   Transitional And Coastal Waters 

WFD   Water Framework Directive 

WHO   World Health Organisation 

WISE   Water Information System for Europe (WFD database)  
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