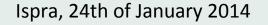


Safety risks of R1234yf: New test results of DUH

Dr. Axel Friedrich

On the behalf of DUH

Ispra, 24th of January 2014

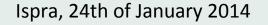


Overview

- Effects of Hydrofluoric acid
- First tests of DUH
- Evaluation: Results of KBA
- Alternative ignition scenarios
- Testing Conditions
- Results of latest DUH-testing
- Recommendations of DUH

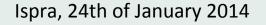
Effects of Hydrofluoric acid

- An exposition of 30-60 minutes with 42 mg/m³ (50 ppm HF) is lethal. IDLH-value ("immediately dangerous to life or health") is set to 25 mg/m³ (30 ppm).¹
- Characteristics²
 - Highly corrosive liquid / contact poison
 - Penetrates tissue more rapidly than typical mineral acids
 - Poisoning can occur through exposure of skin or eyes, or when inhaled or swallowed
 - Inhalation can cause serious corrosive injuries of the lungs
 - Symptoms of exposure to hydrofluoric acid may not be immediately evident



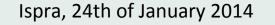
First tests of DUH

- Tests in 2008 and 2009 (together with Federal Institute for Materials Research and Testing, BAM)
- Simulation of frontal collision: potential combustion of emissive refrigerant R1234yf on hot engine parts and a possible formation of HF
- Results:
 - Engine compartment: temperature of 600^o Celsius was sufficient to ignite R1234yf
 - More than 90 ppm HF in the passenger compartment
 - In comparison: No ignition of R134a under comparable conditions



Evaluation: Results of KBA

- Scenarios 1/2: Crash-Tests with 40 km/h based on the GIDAS-Database
 - Test speed much too slow!
 - ECE R94 requires a speed of 56 km/h and Euro NCAP is conducted at 64 km/h
- Scenario 3: Simulation of larger damages of the AC system
 - More realistic: shows what happens at higher speeds, higher temperatures or in case of ageing material of the AC
 - under more severe conditions R1234yf is dangerous
- DUH (and KBA) stated that further testing is urgently needed
- No testing of alternative ignition scenarios yet!



Alternative ignition scenarios

- Previous tests of DUH, BAM, Daimler and KBA with R1234yf: ignition/HF-formation due to emissive refrigerant (-> front collision)
- In Germany approx. 15.500 to 40.000 vehicle fires³ each year (not only caused by collisions)
 - Vandalism
 - Overheated tires and brakes
 - Spreading fire of other vehicles
 - Technical defects
- Relevant scenarios which have to be taken into account
 - Fires in tunnels and parking garages
 - Burning car transporters
 - Fires in car repair shops

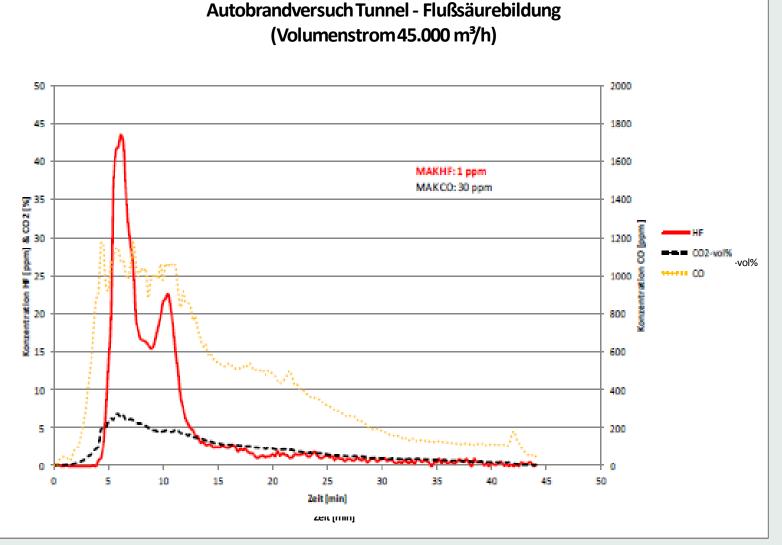
Testing Conditions (1)

- Used car: Mid-size van (2013 model, among the top ten sellers of vehicles using R1234yf in Germany)
- Testing facilities: DMT GmbH (TÜV Nord Group) in Dortmund (Germany)
- **Date**: 13th and 14th of January 2014
- Scenario: Simulation of car fire in a tunnel

Ispra, 24th of January 2014

Testing Conditions (2)

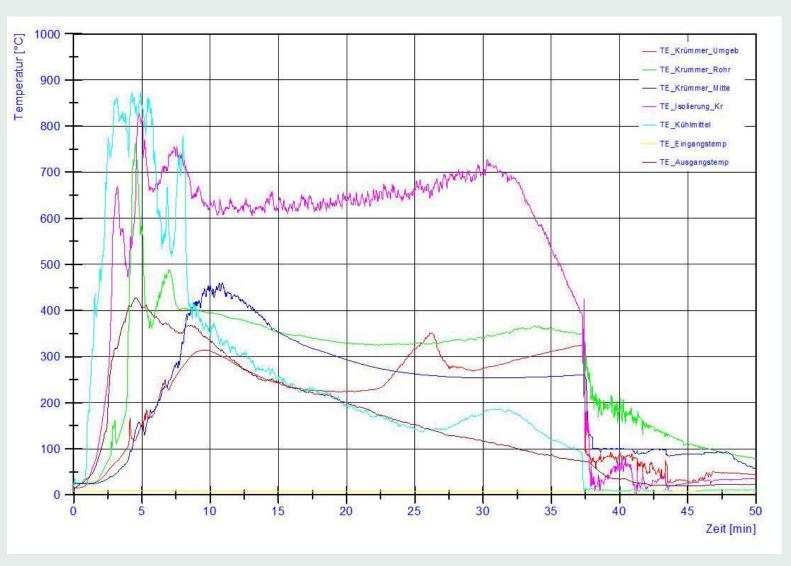
- Preparation of the vehicle
 - Engine compartment facing the direction of flow
 - Thermal sensors in the engine compartment
 - MAC systems contained 372g of R1234yf
- Measurement of HF through exhaust air
 - Flow velocity: 1,5 m/s (with an open cross-section of 10 m²: flow rate of 45.000 m³/h
 - Combustion gas was extracted by suction out of the gallery
 20 m downstream of the back of the vehicle
 - Measurement technology: Fourier transform infra-red spectrometer (FT-IR)



Ispra, 24th of January 2014

Results of latest DUH-testing (1)

Ispra, 24th of January 2014



Results of latest DUH-testing (2)

Ispra, 24th of January 2014

Results of latest DUH-testing (3)

- HF concentrations
 - Up to almost 45 ppm HF in exhaust air
 - Total amount of HF during the test: 126g

• Temperatures did not exceed 900^o Celsius

- Current refrigerant R134a would have not ignited (ignition temperature of R1234yf in comparison: 405° Celsius)
- In general: hazards of HF-formation of R134a are evaluated to be lower than for R1234yf⁴

• Summary of DMT:

"As a result of a vehicle fire with an air conditioning system filled with the new refrigerant R1234yf, considerable quantities of hydrogen fluoride can be formed in a tunnel and expelled into the tunnel air as combustion gas."

Recommendations of DUH

- Further testing of R1234yf urgently needed
- Safety concerns of certain car manufacturers in regard to R1234y have to be acknowledged by the COM
- Automotive industry should switch to the environmentallyfriendly and non-flammable refrigerant CO₂

Sources

¹NIOSH IDLHs "Documentation for Immediately Dangerous to Life or Health Concentrations (IDLHs)" U.S. Department of Health and Human Service, Cincinnati Mai 1994.
²University medical center Jena (<u>http://www.zna.uniklinikum-iena.de/zna_media/SOPs/Flusss%C3%A4ure.pdf</u>).
³German Insurance Association (GDV); ADAC.
⁴BAM (2010), Final test report: Ignition behavior of HFO1234yf.

Ispra, 24th of January 2014

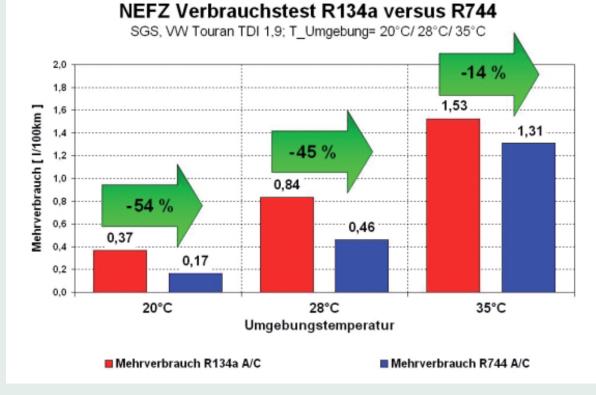
Dr. Axel Friedrich, International transport advisor: <u>axel.friedrich.berlin@gmail.com</u> Dorothee Saar, Head of Transport Division, DUH: <u>saar@duh.de</u>

For more information: <u>www.duh.de</u>

Ispra, 24th of January 2014

CO₂ (R744) as alternative (1)

- Environmentally-friendly: GWP of 1
- No Drop-in (refilling of R134a not possible)
- Cheap and globally available
- In combination with a heat pump: can be used for efficient heating
- Non-flammable
- Already used in many domains:
 - Stationary refrigeration
 - More than 30 busses run with CO₂-MAC systems
 - Deutsche Bahn AG uses CO₂ in its new hybrid-train



CO₂ (R744) as alternative (2)

- Slightly higher costs for CO2 systems (+ 50 € per car)
- Refrigerant recharge is much cheaper
- More efficient than R1234yf/R134a (at very high temperatures on a par)

Ispra, 24th of January 2014

