## **Coolant Behavior Consideration**



### **Problem Definition**

#### Question:

What impact does the release of coolant have on the mitigation of refrigerant ignitions?

#### <u>Hypothesis</u>:

Releasing coolant will generate steam and aerosolized water particles that will drive out oxygen and quench ignition

#### Methodology:

- 1) Rate of occurrence of radiator breach through CAE & crashed vehicles
- 2) Impact of steam during actual vehicle testing
- 3) Relevance of timing: steam generation vs presence of refrigerant
- 4) Conclusions

#### Rate of Occurrence of Coolant Breach - CAE and Crashed Vehicles -



### **Radiator Breach Behavior**

#### **Question:**

Coolant expected to have significant mitigating impact, but how often radiator breach occur during collision?

#### **<u>CAE Analysis</u>** – frontal collision

| No Breach |  |  |  |
|-----------|--|--|--|
| Uncertain |  |  |  |
| Breach    |  |  |  |

| Vehicle    | Component | Speed (kph) |     |    |    |    |    |    |    |
|------------|-----------|-------------|-----|----|----|----|----|----|----|
|            |           | 20          | 25  | 30 | 35 | 40 | 45 | 50 | 55 |
| Vehicle #1 | Condenser | n/a         | n/a |    |    |    |    |    |    |
|            | Radiator  | n/a         | n/a |    |    |    |    |    |    |
|            |           |             |     |    |    |    |    |    |    |
| Vehicle #2 | Condenser |             |     |    |    |    |    |    |    |
|            | Radiator  |             |     |    |    |    |    |    |    |
|            |           |             |     |    |    |    |    |    |    |
| Vehicle #3 | Condenser |             |     |    |    |    |    |    |    |
|            | Radiator  |             |     |    |    |    |    |    |    |

CAE analysis indicates that radiator will always breach

- at lower speeds than that required to breach the A/C system or

- during a collision severe enough to breach A/C system

### **Radiator Breach Behavior (2)**

How often radiator breach during a collision?

#### Vehicle Data – frontal collision

| Vehicle    | Speed (kph) | Radiator | Condenser |
|------------|-------------|----------|-----------|
| Vehicle #1 | 56          |          |           |
| Vehicle #2 | 42.5        |          |           |
| Vehicle #3 | 45          |          |           |
|            | 45          |          |           |
|            | 45          |          |           |
|            | 50          |          |           |
|            | 50          |          |           |
| KBA #1     |             |          |           |
| KBA #2     | 40          |          |           |
| KBA #3     | 40          |          |           |
| KBA #4     |             |          |           |



Vehicle data from actual crash tests validate CAE analysis → radiator always breached - at lower speeds than that required to breach the A/C system or - during a collision severe enough to breach A/C system

### Impact of steam during actual vehicle testing

### **Steam Impact – Release Testing**

Test Setup:

- Modified nozzle, fully tuned system for ignition, > 790°C surface temps, fan off

| Configuration      | # tests | Result             |
|--------------------|---------|--------------------|
| No coolant release | 5       | Ignition (5/5)     |
| Coolant Release    | 5       | No Ignitions (0/5) |

#### Sample of release test showing steam impact:



**Coolant release always mitigated ignition of refrigerant** 

### Steam Impact – full hot/wet crash tests

Test Setup:

- Production level vehicle, all fluids, >350°C surface temp, 64kph, ODB

Sample of release test showing steam impact:



#### Slow motion

- Coolant release occurred, steam observed
- Refrigerant ignition did not occur

### Steam Impact – full hot/wet crash tests

Test Setup:

- Production level vehicle, all fluids, 750 - 790°C surface temps, 45kph - 50kph

Sample of release test showing steam impact:







**Coolant release always occurred. Refrigerant ignition never occurred** 

### Steam Impact – full hot/wet crash tests

Test Setup:

- Production level vehicle, all fluids, 540°C surface temp, 64kph, ODB

Sample of release test showing steam impact:



Slow motion

- Coolant release occurred, steam continued for > 1 minute after collision
- Refrigerant ignition did not occur

#### **R1234yf implementation progress**



New C4-Picasso (June 2013)

- New Efficient Modular Platform with reduced weight and very low CO2 emission  $\rightarrow$  environmental reference
- First PSA vehicle with R1234yf
- 1.6 turbocharged gasoline versions available  $\rightarrow$  focus on this version in the next slides
- Base for C4 Picasso and New 308 programs

#### Safety measures to address the flamability risk

#### In the case of a crash :

- A/C system component damage leading to a refrigerant leak : Location and materials used to mitigate the risk (high bending ability before a leak)
- In a severe temperature situation : specific design of the air intakes, fan strategies, specific design of the heat shields to lower the skin temperatures of the critical components)
- Critical concentration : specific design of the heat shields to
  - Either limit the fluid trapping around hot surfaces (e.g. exhaust manifold)
  - Or insure a good thermal insulation to avoid contact with hot surfaces (e.g. catalysis system)

#### **Event Tree Analysis discussion**

Qualitative ETA constructed simultaneously with the CRP
Quantification evaluated with public databases, and in-house statistical surveys of the customer usage (including german customer)

Target : no significant increase of the fire risk in the case of a crash, compared with a preexisting vehicle

- Pre-existing risk in the field : 8.10<sup>-9</sup> per hour
- Derived from fleet crashes statistics, French Police database, all brands
- Target per hour of 10<sup>-9</sup> as used in the SAE CRP and similar Functional Safety Standard such as ISO26262
  - ISO26262 is applicable for E/E systems
  - Nevertheless it provides figure for proven-in-use validation of E/E systems that could lead to a vehicle fire (e.g. EV Battery charging systems)
  - Most stringent target is 10<sup>-9</sup> for an ASIL D system

#### **ETA validation : Crash tests - Test protocol**

- Selection of worst-case crash test parameters
  - Sufficient collision speed to break the AC system while limiting the hood opening
  - Reach a critical thermal level in the engine compartment (known as able to ignite the refrigerant from previous studies) → (>700°C)
- Conditions actually used for the tests
  - Engine warm-up at 4000 rpm with specific calibration, 0 km/h, T° reaches a level well above the treshold (>730°) : worst temperature reachable on the crash test rig (much lower probability than the 1% of the ETA)
  - Front right-side crash, 35 km/h, 40% overlap, rigid barrier : worst-case scenario selected (much lower than the probability in the ETA)
- Vidéo : New C4 Picasso turbocharged gasoline engine front crash
  - A/C system breaks with refrigerant leak
  - Engine Cooling system leaks
  - Hood stays in place mostly untouched





#### **PSA Crash Test Protocol**



### Relevance of Timing - steam generation vs presence of refrigerant -

### **Timing of Steam Generation vs Refrigerant Release**

#### Question:

Calculations may show that coolant has a mitigating effect, but do the 2 occur at the same time and in the same location?

#### Evidence:





This picture is 125 sec after collision (continues for many more minutes)

Steam generated in same location and for longer time than refrigerant concentration

### Conclusions

- Coolant release significantly mitigate refrigerant ignitions
  - CAE simulations indicate radiator will always breach
    - At lower speeds than A/C system breach occur or
    - During collision severe enough to damage A/C system
  - Real crash data validate CAE simulations
  - Release tests demonstrated coolant significantly mitigates refrigerant ignition
  - Crash testing showed
    - Coolant released during testing
    - No ignitions observed

# All data collected demonstrates that coolant release significantly mitigates refrigerant ignition/propagation