

Impacts and mitigation for microhydropower developments in Wales

Gideon Carpenter Natural Resources Wales

So what are the main impacts?

Creation of physical barrier

- Fragmentation of ecosystem
- Disruption of ecosystem connectivity
- Disruption of geomorphological processes
- Changes to reach hydrology
 - Creation of impoundment
 - Creation of depleted reach
 - Changes to hydraulic conditions (depths, velocities, wetted perimeter)
- Changes to physical habitat & channel morphology
- Physical damage to fish (& other wildlife)

Disruption to ecosystem connectivity and spatial extent of impact

What mitigation can we apply?

- Fish passes & easements
- Protective environmental flow regime
- Geomorphologically sensitive siting & design
- Screening

Formal fish passes

Fish easement

Fish passage summary

- Approval required for formal fish passes
- They require detailed technical design
- They can be complex and expensive to build
- Fish easements may be acceptable on smaller schemes
- Fish passes are not 100% efficient
- Fish lost from system
- Cumulative impact of multiple barriers

Hydrological impacts

- To understand hydrological impacts you will need to understand:
- Natural flow regimes
- Hydropower abstraction regimes
- Hydrological setting of schemes

Impacts of hydrological change - conceptual model

Source: Ecological indicators of the effects of abstraction and flow regulation and optimisation of flow release from water storage reservoirs WFD 21d SNIFFER 2012

Ecological Limits to Hydrological Alteration

Uncertainty in quantifying river flow-ecology relationships

BUT

Ecosystems adapted to natural flow regimes

Restrict deviations from the natural flow regime

Ecological Limits to Hydrological Alteration (ELOHA)

Approach

Indicators of hydrological alteration (IHAs)

- Quantify components of the hydrograph
- Timing frequency magnitude duration
- WFD risk thresholds for deviation

UKTAG Standards (Water Framework Directive Report 82)

- 0-10% for protected areas and HES.
- 10-40% low risk of failing to achieve GES
- 40-80% moderate risk
- >80% high risk

Flow standards – NRW Guidance

Convert ecological requirements into residual flow regime via licence conditions

- Low flow protection usually Q95 low summer flow
- Flow variability % take of available flow
- Protection of peak flows max abstraction as proportion of Qmean

Example of indicators of hydrological alteration

Hydrological modelling

	Ref	1998-	2003-	1998-	2003-	1998-	2003-	1998-	2003-	1998-	2003-	1998-	2003-	1998-	2003-	Average BaD	Averag	Averag	Average Do D	Average DaD	Average DoD	Average DeD
	HoF	Q35	Q95	Q35	Q95	Q35	Q35	Q35	Q95	Q35	Q35	Q35	Q35	Q35	Q35	Q35						
	-2 take	40	40	50	50	60	60	70	70	80	80	90	90	100	100	40	50	60	70	80	30	100
	Avax abs	1.3 x Qmean	1.3 x Qmean	1.3 x Qmean	1.3 x Qmean																	
Group 1: Magnitude of monthly water cond	litions																					
January - mean		-25%	-23%	-28%	-272	-312	-312	-342	-342	-362	-372	-392	-392	-402	-42%	-242	-28%	-312	-342	-372	-392	-412
February - mean		-282	-232	-342	-282	-402	-342	-452	-392	-4.92	-432	-532	-472	-572	-512	-262	-312	-372	-42%	-462	-502	-542
March - mean		-24%	-24%	-23%	-30%	-34%	-36%	-38%	-412	-42%	-46%	-45%	-51%	-492	-55%	-24%	-30%	-35%	-39%	-44%	-48%	-52%
April - mean		-23%	-26%	-36%	-30%	-42%	-35%	-48%	-39%	-53%	-43%	-58%	-472	-63%	-50%	-27%	-33%	-39%	-44%	-48%	-52%	-56%
May - mean		-25%	-24%	-312	-30%	-36%	-36%	-418	-418	-46%	-46%	-50%	-50%	-54%	-55%	-25%	-31%	-36%	-41%	-46%	-50%	-54%
June - mean		-23%	-20%	-28%	-24%	-32%	-28%	-36%	-31%	-40%	-35%	-43%	-38%	-462	-40%	-22%	-26%	-30%	-34%	-37%	40%	-432
July - mean		-28%	-26%	-34%	-31%	-39%	-35%	-432	-39%	-48%	-42%	-518	-46%	-55%	-492	-27%	-32%	-37%	-418	-45%	-48%	-52%
August - mean		-26%	-23%	-30%	-27%	-34%	-31%	-38%	-35%	-412	-39%	-45%	-42%	-478	-45%	-24%	-23%	-33%	-36%	-40%	-43%	-46%
September - mean		-25%	-26%	-23%	-31%	-33%	-35%	-36%	-39%	-39%	-43%	-42%	-46%	-44%	-49%	-25%	-30%	-34%	-38%	-412	-44%	-462
October - mean		-24%	-273	-27%	-32%	-30%	-37%	-33%	-412	-36%	-45%	-38%	-432	-33%	-52%	-25%	-30%	-34%	-37%	-402	437	-462
November - mean		-28%	-24%	-32%	-28%	-36%	-32%	-40%	-36%	-437	-332	-462	-418	487	-44%	-26%	-30%	-34%	-38%	-413 Cook	-44%	-46%
Group 2: Magnitude and duration of annua	l extreme	-604	-204	-204	-304	-004	-044	-304	-014	-304	-40%	-414	-404	-404	-404	-604	-304	-0041	-304	-004	-424	-44%
1 day minimum flow		02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02
1 day maximum flow		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	 0% 	0%	0%
3 day minimum flow			0%		- 0%		- 0%	- 0%	- 0%	- 0%	- 0%	- 0%	0%		- 0%	0%	0%	0%	0%	0%	0%	
3 day maximum flow		0%	- 0%	- 0%	- 0%	- 0%	- 0%	0%	- 0%	- 0%	- 0%	- 0%	- 0%	- 0%	- 0%	0%	0%	0%	0%	0%	- 0%	
7 day minimum flow		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
î day maximum flow		-3%	-32	-3%	-3%	-32	-3%	-3%	-32	-3%	-3%	-3%	-3%	-3%	-32	-3%	-3%	-3%	-3%	-3%	-3%	-32
30 day minimum riow 30 day maximum flow			-44	-44		-44	-44	-44	-44	-62	-44	-44	-44	-44	-4-6	-9-6	- 444 - 159	- 44 - 159	- 44	- 144 - 159	-94	-44
30 day minimum flow		-32	-32	-32	-32	-32	-92	-32	-92	-32	-32	-32	-32	-32	-32	-32	-32	-32	-32	-32	-32	-32
90 day maximum flow		-18%	-13%	-18%	-14.2	-18%	-15%	-18%	-15%	-18%	-15%	-18%	-15%	-18%	-16%	-16%	-16%	-16%	-17%	-17%	-17%	-17%
Group 4: Frequency and duration of high and low																						
flow pulses (flows above Qn25 and below Qn75)																						
Number of high flow pulses		0%	0%	0%	- 0%	338%	0%	401%	412%	451%	499%	518%	540%	504%	583%	0%	0%	169%	407%	475%	528%	543%
Number of low flow pulses		08	25	10%		242	02	032	767 99	-637	- 112 - 22	-537	-632	-487	502	195	02	-36%	127	-61% •6.9	16.5	-52%
Duration of high riow pulse Duration of low flow pulse		-552	-462	-602	-552	-652	-662	244	-662	-652	-662	294	-662	294	-662	502	572	652	662	- 104 - 662	-662	662
Group 6: Median and skew of monthly flow	s											-004			-004					-00%	-004	-00%
January - median		-37%	-18%	-46%	-31%	-55%	-39%	-64%	-462	-74%	-53%	-82%	-62%	-82%	-79%	-27%	-38%	-478	-55%	-63%	-72%	-86%
February - median		-23%	-4%	-39%	-15%	-48%	-28%	-56%	-38%	-62%	-478	-72%	-55%	-84%	-73%	-16%	-27%	-38%	-478	-54%	-63%	-73%
March - median		-22%	0%	-33%	- 0%	-432	-2%	-518	-10%	-60%	-19%	-63%	-26%	-82%	-40%	-118	-17%	-22%	-31%	-39%	-472	-612
April - median		-25%	0%	-34%	0%	432	-12%	-518	-21%	-59%	-29%	70×	-38%	-82%	-60%	-12%	-17%	-27%	-36%	-44%	-54%	-712
May - median		0%	02	0%	0%	0%	-12%	-5%	-23%	-112	-32%	-17%	-42%	-30%	-612	0%	0%	-6%	-14%	-22%	-29%	-45%
June - median			-132	-126	-262	-24%	-262	-344	-114	-444	-20%	-54%	-30%	-70%	-414	-72	-04	-136	-226	-32%	-424	-20%
August - median		-192	-122	-322	-232	402	-332	-472	422	-562	512	-642	-612	-802	-782	-152	-282	-372	-452	532	622	-792
September - median		-30%	-12%	-402	-23%	432	-35%	-572	-44%	-642	-532	722	-632	-83%	-78%	-21%	-32%	422	-50%	592	682	-80%
October - median		-36%	-30%	-45%	-40%	-54%	-48%	-63%	-56%	-72%	-63%	-79%	-712	-87%	-85%	-33%	-42%	-51%	-59%	-67%	-75%	-86%
November - median		-36%	-35%	-45%	-44%	-54%	-53%	-642	-62%	-73%	-70%	-80%	-77%	-91%	-88%	-36%	-45%	-54%	-63%	-71%	-78%	-90%
December - median		-36%	-36%	-45%	-45%	-542	-53%	-63%	-62%	-72%	-70%	-80%	-77%	-30%	-85%	-36%	-45%	-54%	-63%	-71%	-79%	-88%
\$50		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
S80		37%	10%	53%	26%	85%	472	85%	68%	104%	73%	122%	80%	205%	141%	23%	43%	66%	81%	89%	101%	173%
SKIYSKUF Annual SKUSKUF Isa		40%	216	40%	44%	454	285	762	104	775	134	95%	014	1004	1504	016	- 425 • 419	589 589	612	612	314 K 692	1065
SKIVSKDE Feb		292	944 02	452	02	442	22	452	122	502	222	592	172	1022	172	142	222	232	282	362	382	602
SK1/SKDF Mar		33%	02	50%	0%	58%	14.2	57%	27%	56%	412	78%	53%	137%	34%	173	25%	36%	42%	49%	65%	116%
SK1/SKDF April		0%	0%	0%	0%	0%	14.3	6%	30%	12%	48%	112	67%	72	107%	0%	0%	7%	18%	30%	39%	57%
SK1/SKDF May			0%	14.2	- 0%	31%	2%	51%	12%	77%	26%	118%	33%	192%	45%	0%	7%	17%	32%	51%	75%	118%
SK1/SKDF June		12	16%	16%	35%	33%	57%	50%	81%	68%	119%	77%	158%	139%	237%	8%	26%	45%	65%	93%	117%	188%
SK1/SKDF July		24%	13%	472	30%	64%	39%	69%	39%	73%	37%	79%	39%	138%	912	18%	39%	51%	54%	55%	53%	114%
SKNSKUF August		44%	14%	68%	30%	35%	53%	1132	73%	139%	93%	163%	113%	221%	178%	29%	49%	74%	99%	116%	138%	200%
SKI/SKDF Get		20%	43%	024	412	1012	112	1224	024	156%	524	200%	102%	1605	1365	502	295	00%	1022	745	1518	100%
SK1/SKDF Nov		532	552	522	802	542	1082	602	1232	792	1552	1082	1942	1902	1882	542	662	812	342	1172	1512	1832
SK1/SKDF Dec		0%	0%	0%	0%	0%	0%	0%	0%	- 0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Zoning: Channel location & typology

What are we trying to achieve? – the principles

- Zones 1, 2 & 3
- Indicative mitigation based on importance for nature conservation and gradient
- Protecting our most important sites
- Maintaining connectivity
- Limiting spatial impact
- Recognizing flashy upland hydrological regimes
- Opportunity to simplify determination process

Zone 1. Designated sites, protected species & supporting habitat

Designated sites inc:

- Special Areas of Conservation
- Sites of Special Scientific Interest

Supporting habitat for mobile SAC features - salmon

Rare species – crayfish, freshwater pearl mussel

Depleted reach gradient

Basic proxy for range of physical characteristics:

- Location in catchment
- Catchment size
- Depleted reach geomorphology
- Catchment type (headwater/lowland)
- Hydrological regime (flashiness)

Management Zones 2 & 3

Based on simple geomorphological classification.

Zone 2 <10% gradient

Zone 3 >10% gradient

Management Zone definition (2 & 3) and movement between zones

To determine Zone for **indicative mitigation** use criteria of **depleted reach gradient only**

In considering movement **between Zones** take account of a **combination** of the following:

- •Depleted reach gradient
- •Hydrological regime
- Spatial position in catchment
- Catchment characteristics upstream of abstraction
- Contributing inflows

Geomorphological siting & design

WFD - New impoundments in lower catchment streams and rivers are unlikely to be licensed

For smaller impoundments with limited spatial impact -Sensitive siting to:

- reduce backwater effect
- reduce sediment accumulation
- increase sediment passage
- ensure long term structural stability
- Avoid impacts of structure decommissioning/failure
- have no increase in flood risk

Minimise size of impoundment or preferably no impoundment

Sediment passage

Figure 5-5: Typical Coander abstraction

Hydropower Siting and Design Guide

Moorland

Moorlands are upland, low gradient areas, often with nutrient poor and water-logged soits. Sitting an intake in an area of moorland:

- Means in channel structures will have a significant impact on channel morphology due the low gradient.
- Increases the likelihood of channel evolution and maintenance issues as the bank material comprises unconsolidated water-togged soli.

Step-pool

Step features provide a naturally occurring impoundment. Sting an intake at the impounded reach upstream of the step:

- Reduces the potential for morphological change.
- Reduces the lite/hood of maintenance (as the channel is already adjusted to the existing sediment regime).

Active river reach

An active river reach will move across the floodplain, Sitting a structure in an active section or on a bend:

- Increases the risk that the structure will be outflanked or undermined.
- Increases the need for maintenance required to address issues with erosion/deposition.

A waterfail represents flow failing from height at a vertical or near vertical gradient. Sting an intake at a waterfail:

- Prevents flow from being impounded upstream by utilising the steep drop of a waterfall
- Minimises the risk of channel change and the need for river training works (e.g. gabion baskets).

Tributary

- Tributaries can act to repletish a flow depleted channel, therefore:
- intakes should be built upstream of a tributary confluence.
- Intakes should not be built immediately downstream of a confluence. This can result in the deposition of tributary sediments and result in a requirement for increased maintenance.

Stable river reach

A stable river reach has adjusted to the sediment regime, while some erosion and deposition takes place the overall channel dimensions should remain the same. Sting a structure in a stable channet:

Reduces the risk that the structure will be outflanked or undermined. Reduces the risk of failure and/or ongoing maintenance.

www.cyfoethnaturiokymru.gov.uk www.naturalresourceswales.gov.uk

Screening

- Screen design & orientation
- Escape velocities
- Bywash
- Aperture 3mm to 10 mm
- Type bar, coanda, perforated plate, belt
- Cleaning
- Fish 'friendly' turbines

Key points to consider for new proposals

- Where in the catchment is it located?
- Is it on an existing structure?
- Does it create a depleted reach?
- Is it within or likely to affect a designated site or protected species?
- Are there migratory salmonids present?
- What flow standards are likely to be applied?
- Does it have good geomorphological siting & design?