IS
 STATISTIKOS DEPARTAMENTAS STATISTICS LITHUANIA

INTERMEDIATE QUALITY REPORT EU-SILC 2008 OPERATION

CONTENTS

1. Common cross-sectional European Union indicators 3
2. Accuracy 5
2.1. Sample design. 5
2.1.1. Type of sampling design 5
2.1.2. Sampling units 5
2.1.3. Stratification criteria 5
2.1.4. Sample size 5
2.1.5. Sample selection schemes 5
2.1.6. Sample distribution over time. 5
2.1.7. Renewal of sample: Rotational groups 6
2.1.8. Weightings 6
2.1.9. Substitutions 12
2.2. Sampling errors 12
2.3. Non-sampling errors 14
2.3.1. Sampling frame and coverage errors 14
2.3.2. Measurement and processing errors 14
2.3.3. Non-response errors. 15
2.4. Mode of data collection 24
2.5. Interview duration. 25
3. Comparability 25
3.1. Basic concepts and definition 25
3.2. Components of income 26
3.2.1. Differences between the national definitions and standard EU-SILC definitions. 26
3.2.2. The source or procedure used for the collection of income variables 27
3.2.3. The form in which income variables at component level have been 27 obtained
3.2.4. The method used for obtaining income target variables in the required form 28
4. Coherence. 28
4.1. Comparison of income target variables and number of persons who received 28 income from each 'income component', with external source
4.2. Comparison of other target variables with external source 29

1. Common cross-sectional European Union indicators

Table 1. Laeken indicators and other indicators

Overarching indicator	Value
Primary Laeken indicators of social cohesion	
At-risk-of-poverty rate after social transfers - total	20.0
At-risk-of-poverty rate after social transfers - men total	17.6
At-risk-of-poverty rate after social transfers - women total	22.0
At-risk-of-poverty rate after social transfers - 0-17 years	22.8
At-risk-of-poverty rate after social transfers - 65+ years	29.5
At-risk-of-poverty rate after social transfers $-18+$ years	19.3
At-risk-of-poverty rate after social transfers - 18-64 years	16.8
At-risk-of-poverty rate after social transfers - men 65+ years	16.8
At-risk-of-poverty rate after social transfers - men 18+ years	16.2
At-risk-of-poverty rate after social transfers - men 18-64 years	16.0
At-risk-of-poverty rate after social transfers - women 65+ years	35.9
At-risk-of-poverty rate after social transfers - women 18+ years	21.8
At-risk-of-poverty rate after social transfers - women 18-64 years	17.4
At-risk-of-poverty rate after social transfers - employed	9.3
At-risk-of-poverty rate after social transfers - non-employed	32.6
At-risk-of-poverty rate after social transfers - unemployed	51.0
At-risk-of-poverty rate after social transfers - retired	30.8
At-risk-of-poverty rate after social transfers - other inactive	31.5
At-risk-of-poverty rate after social transfers - men, employed	9.1
At-risk-of-poverty rate after social transfers - men, non-employed	28.6
At-risk-of-poverty rate after social transfers - men, unemployed	49.2
At-risk-of-poverty rate after social transfers - men, retired	19.1
At-risk-of-poverty rate after social transfers - men, other inactive	32.9
At-risk-of-poverty rate after social transfers - women, employed	9.5
At-risk-of-poverty rate after social transfers - women, non-employed	35.1
At-risk-of-poverty rate after social transfers - women, unemployed	53.3
At-risk-of-poverty rate after social transfers - women, retired	36.4
At-risk-of-poverty rate after social transfers - women, other inactive	30.6
Median of the equivalised disposable household income	14396.15
At-risk-of-poverty threshold - single	8637.7
At-risk-of-poverty threshold - 2 adults, 2 children	18139.2
Inequality of income distribution S80/S20 income quintile share ratio	5.9
Aggregate replacement ratio - total	0.437
Aggregate replacement ratio - men total	0.448
Aggregate replacement ratio - women total	0.462
At risk-of-poverty rate anchored at a fixed moment in time (2005) - total	5.2
At risk-of-poverty rate anchored at a fixed moment in time (2005) - men total	5.2
At risk-of-poverty rate anchored at a fixed moment in time (2005) - women total	5.2
At risk-of-poverty rate anchored at a fixed moment in time (2005) - 0-17 years	7.4
At risk-of-poverty rate anchored at a fixed moment in time (2005) - 18-64 years	5.4
At risk-of-poverty rate anchored at a fixed moment in time (2005) - $65+$ years	1.7

Overarching indicator	Value
At risk-of-poverty rate anchored at a fixed moment in time (2005) - men 18-64 years	5.6
At risk-of-poverty rate anchored at a fixed moment in time (2005) - men 65+ years	1.6
At risk-of-poverty rate anchored at a fixed moment in time (2005) - women 18-64 years	5.3
At risk-of-poverty rate anchored at a fixed moment in time (2005) - women $65+$ years	1.8
Relative median at-risk-of-poverty gap - total	25.7
Relative median at-risk-of-poverty gap - men total	28.9
Relative median at-risk-of-poverty gap - women total	25.0
Relative median at-risk-of-poverty gap - 0-17 years	28.1
Relative median at-risk-of-poverty gap - 18-64 years	30.6
Relative median at-risk-of-poverty gap - 65+ years	16.8
Relative median at-risk-of-poverty gap - 18+ years	25.3
Relative median at-risk-of-poverty gap - men, 18-64 years	31.2
Relative median at-risk-of-poverty gap - men, 65+ years	12.2
Relative median at-risk-of-poverty gap - men, 18+ years	29.4
Relative median at-risk-of-poverty gap - women, 18-64 years	28.5
Relative median at-risk-of-poverty gap - women, 65+ years	17.7
Relative median at-risk-of-poverty gap - women, 18+ years	23.8
Before social transfers except old-age and survivors' benefits	
At-risk-of-poverty rate before social transfers - total	27.2
At-risk-of-poverty rate before social transfers - men total	25.4
At-risk-of-poverty rate before social transfers - women total	28.8
At-risk-of-poverty rate before social transfers - 0-17 years	32.5
At-risk-of-poverty rate before social transfers - 18-64 years	24.3
At-risk-of-poverty rate before social transfers - 65+ years	32.4
At-risk-of-poverty rate before social transfers - 18+ years	25.9
At-risk-of-poverty rate before social transfers - men, 18-64 years	23.7
At-risk-of-poverty rate before social transfers - men, 65+ years	18.9
At-risk-of-poverty rate before social transfers - men, 18+ years	23.0
At-risk-of-poverty rate before social transfers - women, 18-64 years	24.8
At-risk-of-poverty rate before social transfers - women, 65+ years	39.2
At-risk-of-poverty rate before social transfers - women, 18+ years	28.2
Before social transfers including old-age and survivors' benefits	
At-risk-of-poverty rate before social transfers - total	38.5
At-risk-of-poverty rate before social transfers - men total	35.5
At-risk-of-poverty rate before social transfers - women total	41.0
At-risk-of-poverty rate before social transfers - 0-17 years	34.9
At-risk-of-poverty rate before social transfers - 18-64 years	29.0
At-risk-of-poverty rate before social transfers - 65+ years	81.4
At-risk-of-poverty rate before social transfers - 18+ years	39.3
At-risk-of-poverty rate before social transfers - men, 18-64 years	27.3
At-risk-of-poverty rate before social transfers - men, 65+ years	80.6
At-risk-of-poverty rate before social transfers - men, 18+ years	35.3
At-risk-of-poverty rate before social transfers - women, 18-64 years	30.5
At-risk-of-poverty rate before social transfers - women, 65+ years	81.8
At-risk-of-poverty rate before social transfers - women, 18+ years	42.7

2. Accuracy

2.1. Sample design

2.1.1 Type of sampling design

2008 operation was the forth wave of EU-SILC in Lithuania. For the first time households which were selected for the survey in 2005 divided into 4 rational groups. One of these groups was dropped out after 2005 operation and not included to the survey of 2006 according to the original integrated design. A new sub-sample of households was selected to the sample of year 2006. For new sample stratified sample design was used. Population register was used as a sampling frame. Simple random sample of persons was used in each stratum. The second group was dropped out after 2006 operation and not included to the survey of year 2007. A new sub-sample of households was selected to the sample of year 2007 according the same rules as selected a new sub-sample before. The third group was dropped out after 2007 operation and not included to the survey of year 2008. A new subsample of households was selected to the sample of year 2008 according the same rules as selected a new sub-sample before.

2.1.2 Sampling units

The sampling units are private households.

2.1.3 Stratification criteria

While selecting the new rotational group of the sample the country were grouped into 7 strata: 5 largest cities, other cities and rural area. Simple random sample of non-institutional persons aged 16 and over was selected from the Population Register in each stratum. Household which lives in the selected person's address was surveyed.

2.1.4 Sample size

The sample consisted of 5983 households. This number includes 4068 households, which responded to the survey in 2007 and where fallowed up during 2008 operation (3 rotational groups), newly selected rotational group - 1915 households.

2.1.5 Sample selection schemes

Within each of 7 strata simple random sample was used to select the person's address.

2.1.6. Sample distribution over time

Fixed income reference period was used and therefore the sample was not principally divided into months or weeks. Fieldwork period was from the middle of April 2008 till the end of middle of August.

Table 2. Distribution of households by month of interview (HB050)

Month	Per cent
April	20.7
May	34.4
June	26.7
July	15.1
August	3.1

2.1.7. Renewal of sample: Rotational groups

In 2005 operation the sample was randomly divided into 4 equally sized rotational groups. In 2006 operation, first of four groups was dropped out after 2005 operation and not included to the survey of 2006 according to the original integrated design. Furthermore, for a split-off household the rotational group was set the same as one of original household. New rotational group was named as $1^{\text {st }}$. In 2007 operation, second of four groups was dropped out after 2006 operation and not included to the survey of 2007 according to the original integrated design. New rotational group was named as $2^{\text {nd }}$. In 2008 operation, third of four groups was dropped out after 2007 operation and not included to the survey of 2008 according to the original integrated design. New rotational group was named as $3{ }^{\text {rd }}$.

2.1.8. Weightings

The following sub-samples are consisted in the sample of the year 2007:
s_{1} - sample of the person in the households enumerated in 2008, persons participate for the first time (only $3^{\text {rd }}$ rotational group);
s_{2} - sample of the person in the households enumerated in 2007, persons participate for the second time (only $2^{\text {nd }}$ rotational group);
s_{3} - Sample of the person in the households enumerated in 2006, persons participate for the third time (only $1^{\text {st }}$ rotational group).
s_{4} - Sample of the person in the households enumerated in 2005, persons participate for the forth time (only $4^{\text {th }}$ rotational group).

Base weights of year 2008 are calculated independently for each sub-sample.

2.1.8.1. Sub-sample is selected for the first time in the survey (s_{1}).

1.1. Design weights

Inclusion probability of a household in each stratum of new sub-sample is equal:

$$
\pi_{h k}=\frac{n_{h} m_{h k}}{N_{h}},
$$

here $m_{h k}$ - the number of persons in k th household aged 16 and over in h th stratum in Population Register; n_{h} - the number of households in h th stratum; N_{h} - the number of persons aged 16 and older in h th stratum.
Sample design weights are:

$$
D B 080_{h}=d_{h k}=\frac{1}{\pi_{h k}} .
$$

2.1.8.1.2. Adjustments for non-response at household level

To estimate household response probability logistic regression model are used. Response propensities are estimated for responding and non-responding households. Then for the each household k define variable:

$$
R_{k}= \begin{cases}1, & \text { if the household } k \text { responds } \\ 0, & \text { otherwise }\end{cases}
$$

Let define the response propensity of each household k :

$$
p_{k}=\operatorname{Pr}\left(R_{k}=1 \mid V_{k}\right)
$$

where V_{j} - auxiliary variables (county group, urbanization status, age of person belonging to address), R_{k} is defined above.
Then the modified design weights are defined:

$$
D B 080_{k}^{(N)}=d_{h k}^{(N)}=\frac{d_{h k}}{p_{k}} .
$$

2.1.8.1.3. Adjustment to external sources (calibration)

Modified design weights are calibrated, seeking for the weights, which would remain as close as possible to sample design weights and allow obtaining some exact demographic estimates - auxiliary variables:

- number of persons aged 0 and older (including newborn children) by different strata;
- number of persons by different age groups;
- number of males by different age groups.

The product of calibration procedure is the calibrated household weight of sub-sample s_{1}; it is equals to the household base weight $w_{1 k}^{1}$ for sub-sample s_{1} of year 2007. Household base weight is assigned to each of its members: $w_{1 i}^{1}=w_{1 k}^{1}, i \in k$.
The SAS macro program CLAN is used to calculate calibrated weights.

2.1.8.2. Sub-sample participated for the second time in the survey $\left(s_{2}\right)$.

Sub-sample s_{2} participated in the survey for the second time. To construct base weights of sub-sample s_{2} of year 2008, we need to have base weights of this sub-sample of year 2007.
Base weights of year 2007 are calculated according steps which use in paragraph 1 (subsample is selected for the first time in the survey). Let denote base personal weight of subsample s_{2} of year 2007 by $w_{1 i}^{2}$.
To determine base weight $w_{2 i}^{2}$ of year 2007 from base weight $w_{1 i}^{2}$ of year 2007, we use following step:
for the each person i, who are enumerated at year 2006 and still in-scope at year 2008 define variable:

$$
R_{i}= \begin{cases}1, & \text { if the person successfully enumerated at year } 2008 \\ 0, & \text { otherwise. }\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{i}=\operatorname{Pr}\left(R_{i}=1 \mid V_{i}\right)
$$

where V_{i} - auxiliary variables (like strata, total disposable household income, capacity to face unexpected financial expenses, lowest monthly income to make ends meet), R_{i} is defined above.

Then the personal base weight of sub-sample s_{2} of year 2008 is defined:

$$
w_{2 i}^{2}=4 * \frac{w_{1 i}^{2}}{p_{i}} .
$$

Additionally assign the weights for new members of households of sub-sample s_{2} :
a) children born to sample women receive the weight of the mother.
b) persons, moving into sample households from outside the survey population, receive the average of base weights of existing household members.
c) persons, moving into sample households from other non-sample households in the population, receive zero base weight.

2.1.8.3. Sub-sample participated for the third time in the survey (\mathbf{s}_{3}).

Sub-sample s_{3} (only $1^{\text {st }}$ rotational group) participated in the survey for the third time. To construct base weights of sub-sample s_{3} of year 2008, we need to have base weights of this sub-sample of year 2006 and year 2007. Base weights of year 2006 are calculated according steps which use in paragraph 1 (sub-sample is selected for the first time in the survey). Let denote base personal weight of sub-sample s_{3} of year 2006 by $w_{1 i}^{3}$.
To determine base weight $w_{2 i}^{3}$ of year 2007 from base weight $w_{1 i}^{3}$ of year 2009, we use following step: for the each person i, who are enumerated at year 2006 and still in-scope at year 2007 define variable:

$$
R_{1 i}= \begin{cases}1, & \text { if the person successfully enumerated at year } 2007 \\ 0, & \text { otherwise. }\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{1 i}=\operatorname{Pr}\left(R_{1 i}=1 \mid V_{1 i}\right)
$$

where $V_{1 i}$ - auxiliary variables (like strata, total disposable household income), $R_{1 i}$ is defined above. Then the personal base weight of sub-sample s_{3} of year 2007 is defined:

$$
w_{2 i}^{3}=\frac{w_{1 i}^{3}}{p_{1 i}} .
$$

Additionally assign the weights for newborns, for persons moving into sample households from outside the survey population and for persons moving into sample households from other non-sample households in the population according to the previous paragraph.
To determine base weight $w_{3 i}^{3}$ of year 2008 from base weight $w_{2 i}^{3}$ of year 2007, we denote for the each person i of sub-sample s_{3}, who are enumerated at year 2007 and still in-scope at year 2008 variable:

$$
R_{2 i}= \begin{cases}1, & \text { if the person successfully enumerated at year } 2008 \\ 0, & \text { otherwise. }\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{2 i}=\operatorname{Pr}\left(R_{2 i}=1 \mid V_{2 i}\right)
$$

where $V_{2 i}$ - auxiliary variables (like strata, dwelling type, tenure status, total disposable household income, lowest monthly income to make ends meet). Then the personal base weight of sub-sample s_{3} of year 2008 is defined:

$$
w_{3 i}^{3}=\frac{w_{2 i}^{3}}{p_{2 i}} .
$$

Additionally assign the weights for new members who come in to the households in to year

2008 of sub-sample s_{3} according to the previous paragraph.
We have persons of sub-sample s_{3} who participated in year 2008, not participated in year 2007 and participated in year 2006. They are returnees.
Base personal weight for returnees of sub-sample s_{3} of year 2006 defined by $w_{1 i}^{3}$. Denote for the each returnee i of sub-sample s_{3}, who are enumerated at year 2006 and respond at year 2008 variable:

$$
R_{3 i}= \begin{cases}1, & \text { if the person enumerated at year } 2006 \text { and } 2008 \\ 0, & \text { otherwise } .\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{3 i}=\operatorname{Pr}\left(R_{3 i}=1 \mid V_{3 i}\right)
$$

where $V_{3 i}$ - auxiliary variables (total disposable household income). Then the returnees' base weight of sub-sample s_{3} of year 2008 is defined:

$$
w_{3 i}^{3}=\frac{w_{1 i}^{3}}{p_{3 i}} .
$$

Then final base weight of sub-sample s_{3} of year 2008 is

$$
w_{3 i}^{3^{*}}=\left\{\begin{array}{l}
\frac{t-t_{r}}{t} \cdot w_{3 i}^{3}, \text { if } i \text { is non-returnee } ; \\
w_{3 i}^{3}, \text { otherwise } .
\end{array}\right.
$$

here t is the sum of base weights $w_{3 i}^{3}$ of non-returnees, t_{r} is the sum of weights $w_{3 i}^{3}$ of returnees.

2.1.8.4. Sub-sample participated for the third time in the survey (\mathbf{s}_{4}).

Sub-sample s_{3} (only $4^{\text {th }}$ rotational group) participated in the survey for the forth time. To construct base weights of sub-sample s_{4} of year 2008, we need to have base weights of this sub-sample of year 2005, 2006 and 2007. Base weights of year 2005 are calculated according steps which use in paragraph 1 (sub-sample is selected for the first time in the survey). Let denote base personal weight of sub-sample s_{3} of year 2005 by $w_{1 i}^{4}$.
To determine base weight $w_{2 i}^{4}$ of year 2006 from base weight $w_{1 i}^{4}$ of year 2005, we use following step: for the each person i, who are enumerated at year 2005 and still in-scope at year 2006 define variable:

$$
R_{1 i}= \begin{cases}1, & \text { if the person successfully enumerated at year } 2006 \\ 0, & \text { otherwise. }\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{1 i}=\operatorname{Pr}\left(R_{1 i}=1 \mid V_{1 i}\right)
$$

where $V_{1 i}$ - auxiliary variables (like strata, total disposable household income), $R_{1 i}$ is defined above. Then the personal base weight of sub-sample s_{4} of year 2006 is defined:

$$
w_{2 i}^{4}=\frac{w_{1 i}^{4}}{p_{1 i}} .
$$

Additionally assign the weights for newborns, for persons moving into sample households from outside the survey population and for persons moving into sample households from other non-sample households in the population according to the previous paragraph.

To determine base weight $w_{3 i}^{4}$ of year 2007 from base weight $w_{2 i}^{4}$ of year 2006, we denote for the each person i of sub-sample s_{4}, who are enumerated at year 2006 and still in-scope at year 2007 variable:

$$
R_{2 i}= \begin{cases}1, & \text { if the person successfully enumerated at year } 2007 \\ 0, & \text { otherwise. }\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{2 i}=\operatorname{Pr}\left(R_{2 i}=1 \mid V_{2 i}\right)
$$

where $V_{2 i}$ - auxiliary variables (like strata, dwelling type, tenure status, total disposable household income, lowest monthly income to make ends meet). Then the personal base weight of sub-sample s_{3} of year 2007 is defined:

$$
w_{3 i}^{4}=\frac{w_{2 i}^{4}}{p_{2 i}} .
$$

Additionally assign the weights for new members who come in to the households in to year 2007 of sub-sample s_{4} according to the previous paragraph.

We have persons of sub-sample s_{4} who participated in year 2007, not participated in year 2006 and participated in year 2005. They are returnees.
Base personal weight for returnees of sub-sample s_{4} of year 2005 defined by $w_{1 i}^{4}$. Denote for the each returnee i of sub-sample s_{4}, who are enumerated at year 2005 and respond at year 2007 variable:

$$
R_{3 i}= \begin{cases}1, & \text { if the person enumerated at year } 2005 \text { and } 2007 \\ 0, & \text { otherwise } .\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{3 i}=\operatorname{Pr}\left(R_{3 i}=1 \mid V_{3 i}\right)
$$

where $V_{3 i}$ - auxiliary variables (total disposable household income). Then the returnees' base weight of sub-sample s_{4} of year 2007 is defined:

$$
w_{3 i}^{4}=\frac{w_{1 i}^{4}}{p_{3 i}} .
$$

Then final base weight of sub-sample s_{3} of year 2007 is

$$
w_{3 i}^{4^{*}}=\left\{\begin{array}{l}
\frac{t-t_{r}}{t} \cdot w_{3 i}^{4}, \text { if } i \text { is non-returnee } ; \\
w_{3 i}^{4}, \text { otherwise } .
\end{array}\right.
$$

here t is the sum of base weights $w_{3 i}^{4}$ of non-returnees, t_{r} is the sum of weights $w_{3 i}^{4}$ of returnees.
To determine base weight $w_{4 i}^{4}$ of year 2008 from base weight $w_{3 i}^{4^{*}}$ of year 2007, we denote for the each person i of sub-sample s_{4}, who are enumerated at year 2007 and still in-scope at year 2008 variable:

$$
R_{4 i}= \begin{cases}1, & \text { if the person successfully enumerated at year } 2008 \\ 0, & \text { otherwise } .\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{4 i}=\operatorname{Pr}\left(R_{4 i}=1 \mid V_{4 i}\right)
$$

where $V_{4 i}$ - auxiliary variables (like strata, dwelling type, tenure status, total disposable
household income, lowest monthly income to make ends meet). Then the personal base weight of sub-sample s_{3} of year 2008 is defined:

$$
w_{4 i}^{4}=\frac{w_{3 i}^{4^{*}}}{p_{4 i}} .
$$

Additionally assign the weights for new members who come in to the households in to year 2008 of sub-sample s_{4} according to the previous paragraph.

We have persons of sub-sample s_{4} who participated in year 2008, not participated in year 2007 and participated in year 2006. They are returnees.
Base personal weight for returnees of sub-sample s_{4} of year 2006 defined by $w_{2 i}^{4}$. Denote for the each returnee i of sub-sample s_{4}, who are enumerated at year 2006 and respond at year 2008 variable:

$$
R_{5 i}= \begin{cases}1, & \text { if the person enumerated at year } 2006 \text { and } 2008 \\ 0, & \text { otherwise. }\end{cases}
$$

Using logit model, define the response propensity of each person i :

$$
p_{5 i}=\operatorname{Pr}\left(R_{5 i}=1 \mid V_{5 i}\right)
$$

where $V_{5 i}$ - auxiliary variables (total disposable household income). Then the returnees' base weight of sub-sample s_{3} of year 2008 is defined:

$$
w_{4 i}^{4}=\frac{w_{2 i}^{4}}{p_{5 i}} .
$$

Then final base weight of sub-sample s_{4} of year 2008 is

$$
w_{4 i}^{4^{*}}=\left\{\begin{array}{l}
\frac{t-t_{r}}{t} \cdot w_{4 i}^{4}, \text { if } i \text { is non-returnee } ; \\
w_{4 i}^{4}, \text { otherwise } .
\end{array}\right.
$$

here t is the sum of base weights $w_{4 i}^{4}$ of non-returnees, t_{r} is the sum of weights $w_{4 i}^{4}$ of returnees.

2.1.8.5. Final cross-sectional weights (DB080, RB060, PB040, RL070)

Each sub-sample with base weights represents the whole population. The four sub-samples are combined. Averages of person base weights $\left(w_{1 i}^{1}, w_{2 i}^{2}, w_{3 i}^{3^{*}}, w_{3 i}^{4^{*}}\right)$ are calculated for each household. As result we have the base weights for each household: $w_{h}^{1}, w_{h}^{2}, w_{h}^{3}$ and w_{h}^{4}. Then calculated modified base weights

$$
w_{h}=\left\{\begin{array}{l}
w_{h}^{1} \cdot n_{1} / \sum_{r=1}^{4} n_{r}, \text { if } h \in s_{1} ; \\
w_{h}^{2} \cdot n_{2} / \sum_{r=1}^{4} n_{r}, \text { if } h \in s_{2} ; \\
w_{h}^{3} \cdot n_{3} / \sum_{r=1}^{4} n_{r}, \text { if } h \in s_{3} ; \\
w_{h}^{4} \cdot n_{4} / \sum_{r=1}^{4} n_{r}, \text { if } h \in s_{4} .
\end{array}\right.
$$

here n_{r} is the sample size of the sub-samples, $r=1,2,3,4$.

Modified base weights are calibrated, seeking for the weights, which would remain as close as possible to sample design weights and allow obtaining some exact demographic estimates auxiliary variables:

- number of persons aged 0 and older (including newborn children) by different strata;
- number of persons by different age groups;
- number of males by different age groups.

The product of calibration procedure is the calibrated household weight DB090 of year 2008.
Household cross-sectional weight is assigned to each of its members $R B 050_{i}=D B 090_{h}, i \in h . R B 050$ are personal cross-sectional weights.
The cross-sectional weight PB040 for persons aged 16 or more is equal to the RB050 crosssectional weight of aged 16 or more.
The children cross-sectional weight for child care $R L 070$ is equal to the $R B 050$ crosssectional weight of group from 0 to 12 years old.

SAS macro program CLAN is used for calculation of the calibrated weights.

2.1.9. Substitutions

No substitution was used.

2.2. Sampling errors

The variance estimates were computed using $S A S$ macro- program CLAN.
Table 3. Estimates, their standard error, confidence interval and design effect for the common cross-sectional indicators

Indicator	Value	Standard error	Confidence interval at95\%		CV(\%)	Deff (calibration used)
At-risk-of-poverty rate after social transfers - total	20,0	0,9	18,3	21,7	4,43	0,88
At-risk-of-poverty rate after social transfers - men total	17,6	1,0	15,7	19,6	5,60	0,86
At-risk-of-poverty rate after social transfers - women total	22,0	1,0	20,1	23,9	4,41	0,92
At-risk-of-poverty rate after social transfers - 0-17 years	22,8	1,9	19,2	26,4	8,12	0,88
At-risk-of-poverty rate after social transfers -65+ years	29,5	1,3	26,8	32,1	4,57	0,93
At-risk-of-poverty rate after social transfers -18+ years	19,3	0,8	17,8	20,8	4,02	0,92
At-risk-of-poverty rate after social transfers - 18-64 years	16,8	0,9	15,0	18,5	5,26	0,96
At-risk-of-poverty rate after social transfers - men 65+ years	16,8	1,5	13,9	19,7	8,81	0,71
At-risk-of-poverty rate after social transfers - men 18+ years	16,2	0,8	14,5	17,8	5,22	0,88
At-risk-of-poverty rate after social transfers - men 18-64 years	16,0	0,9	14,2	17,9	5,91	0,90
At-risk-of-poverty rate after social transfers - women 65+ years	35,9	1,7	32,6	39,3	4,78	1,09
At-risk-of-poverty rate after social transfers - women 18+ years	21,8	0,9	20,1	23,6	4,11	1,01
At-risk-of-poverty rate after social transfers - women 18-64 years	17,4	1,0	15,4	19,5	5,88	1,05
At-risk-of-poverty rate before social transfers - total	27,2	1,1	25,1	29,3	3,90	1,05
At-risk-of-poverty rate before social transfers - men total	25,4	1,2	23,0	27,8	4,87	1,12
At-risk-of-poverty rate before social transfers - women total	28,8	1,1	26,6	30,9	3,80	0,98
At-risk-of-poverty rate before social transfers - 0-17 years	32,5	2,2	28,2	36,7	6,66	1,12
At-risk-of-poverty rate before social transfers - 18-64 years	24,3	1,1	22,2	26,4	4,40	1,05
At-risk-of-poverty rate before social transfers -65+ years	32,4	1,4	29,7	35,0	4,23	0,93
At-risk-of-poverty rate before social transfers - 18+ years	25,9	0,9	24,1	27,7	3,55	1,00
At-risk-of-poverty rate before social transfers - men, 18-64 years	23,7	1,2	21,3	26,1	5,15	1,12
At-risk-of-poverty rate before social transfers - men, 65+ years	18,9	1,5	15,9	22,0	8,18	0,72
At-risk-of-poverty rate before social transfers - men, 18+ years	23,0	1,1	20,9	25,1	4,66	1,09
At-risk-of-poverty rate before social transfers - women, 18-64 years	24,8	1,2	22,5	27,1	4,65	1,04
At-risk-of-poverty rate before social transfers - women, 65+ years	39,2	1,7	35,9	42,6	4,41	1,08
At-risk-of-poverty rate before social transfers - women, $18+$ years	28,2	1,0	26,3	30,2	3,50	1,00

2.3. Non-sampling errors

2.3.1. Sampling frame and coverage errors

The sampling frame of EU-SILC 2008 was the Residents’ Register. The Residents’ Register is updated regularly. However, not all movements of population within country are reflected, whereas not all population report about changing of address to the migration office. Consequently, the households, living in selected person's address, were surveyed.
Percentage of non-contacted addresses by the reasons: address does not exist or is nonresidential address or is unoccupied (DB120=23) out of total selected addresses -4.2 ; address can not be located -0.5 .

2.3.2. Measurement and processing errors

2.3.2.1. Measurement errors

The measurement errors originate from the questionnaire (its wording, design), the data collection method, the interviewers and the respondents. While it is impossible to avoid this type of errors completely, procedures were taken to reduce them as much as possible.
The questionnaires for EU-SILC 2008 were developed according to the EU-SILC regulations and EU-SILC doc $65 / 04$. The questionnaires were tested during the first wave of pilot survey conducted in 2004. Designing questionnaires for main operation errors and interviewers feedbacks from the pilot survey were considered. Also the experience from the different waves (2005, 2006 and 2007) of the survey was used to improve the questionnaire for the operation 2008.
The interviewers' training was organized in each territorial statistical office in the first half of April. Interviewers' manual presented instructions on filling in the questionnaires and detailed explanation for all income components, particularly benefits, were prepared. Special emphasis was placed on tracing rules and specifics of assigning household and person numbers in the longitudinal survey. Methodical explanations were combined with practical tests. Interviewers filled in questionnaires, our specialists checked and then mistakes were discussed. Fieldwork has started immediately after interviewers training.
Fieldwork was carried out by permanent interviewers. In total 87 interviewers were involved into 2008 year operation. One interviewer had an average 69 selected addresses.

2.3.2.2. Processing errors

Completed questionnaires were checked by supervisors. Necessary call-backs were made. Data were entered by data entry operators in 5 regional statistical offices. Blaise software was used for data entry. The computer program included the possible logical checks between questions and questionnaires, also a package of alerts (warning and error ones) related to ranges of admissible values and logical connections between questions. Coding controls were implemented in post-data-collection. After the data entry was finished the data were checked for consistency by specialists of the Living Standard Statistics Division of Statistics Lithuania.

2.3.3. Non-response errors

2.3.3.1. Achieved sample size

Achieved sample size: 4823 households and 10473 persons aged 16 or older.
Table4. Accepted interviews

	Number of households for which an interview is accepted for the database $($ DB135 = 1)	Number of persons aged 16 or older wotational are members of the households group
for which the interview is accepted for the database (DB135 = 1) and who completed personal interview		
(RB205 = 11 to 14)		

2.3.3.2. Unit non-response

The following rates are computed according to Eurostat definitions for the total sample.
Address contact rate:

$$
R a=\frac{5727}{6012-251} \approx 0.994
$$

The proportion of completed household interviews accepted for the database:

$$
R h=\frac{4823}{6012} \approx 0.802
$$

Household non-response rates:

$$
N R h=(1-(R a * R h)) * 100=(1-(0.994 * 0.802)) * 100=20.28
$$

The proportion of completed personal interviews within the households accepted for the database:

$$
R p=\frac{10473}{10473} \approx 1
$$

Individual non-response rate:

$$
N R p=(1-(R p)) * 100=(1-1) * 100=0
$$

Overall individual non-response rate:

$$
* N R p=(1-(R a * R h * R p)) * 100=(1-(0.994 * 0.802 * 1)) * 100 \approx 20.28 \text {. }
$$

The following rates are computed according to Eurostat definitions for the new replication.

Address contact rate:

$$
R a=\frac{1735}{1915-155} \approx 0.986
$$

The proportion of completed household interviews accepted for the database:

$$
R h=\frac{1247}{1915} \approx 0.651
$$

Household non-response rates:

$$
N R h=(1-(R a * R h)) * 100=(1-(0.986 * 0.651)) * 100=35.81
$$

The proportion of completed personal interviews within the households accepted for the database:

$$
R p=\frac{2798}{2798} \approx 1
$$

Individual non-response rate:

$$
N R p=(1-(R p)) * 100=(1-1) * 100=0
$$

Overall individual non-response rate:
*NRp $=(1-(R a * R h * R p)) * 100=(1-(0.986 * 0.651 * 1)) * 100 \approx 35.81$.
2.3.3.3 Distribution of households by 'record of contact at address' (DB120), by 'household questionnaire result' (DB130) and by 'household interview acceptance' (DB135)
Table 5. Distribution of households by 'record of contact at address'

	Rotational group 1		Rotational group 2		Rotational group 3		Rotational group 4		Total	
	N	\%								
Total (DB120=11 to 23)	1597	100	1590	100	1915	100	910	100	6012	100
Address contacted (DB120=11)	1565	98	1547	97.3	1735	90.6	880	96.70	5727	95.26
Address non-contacted (DB120=21 to 23)	32	2	43	2.7	180	9.4	30	3.3	285	4.74
Total address non-contacted (DB120=21 to 23)	32	100	43	100	180	100	30	100	285	100
Address cannot be located (DB120=21)	3	9.37	4	9.3	23	12.78	2	6.67	32	11.23
Address unable to access (DB120=22)	0	0	0	0	2	1.11	0	0	2	0.7
Address does not exist or is nonresidential address or is unoccupied or not principal residence (DB120 $=23$)	29	90.63	39	90.7	155	86.11	28	93.33	251	88.07

Table 6. Distribution of address contacted by 'household questionnaire result' and by 'household interview acceptance‘

	Rotational group 1		Rotational group 2		Rotational group 3		Rotational group 4		Total	
	N	\%								
Total (DB130=11 to 24)	1565	100	1547	100	1735	100	880	100	5727	100
Household questionnaire completed (DB130=11)	1415	90.42	1367	88.36	1247	71.87	794	90.23	4823	84.22
Interview not completed (DB130=21 to 24)	150	9.58	180	11.64	488	28.13	86	9.77	904	15.78
Total interview not completed (DB130=21 to 24)	150	100	180	100	488	100	86	100	904	100
Refusal to co-operate (DB130=21)	94	62.67	109	60.56	406	83.2	45	52.33	654	72.35
Entire household temporarily away for duration of fieldwork (DB130=22)	21	14	30	16.67	69	14.14	20	23.26	140	15.49
Household unable to respond (illness, incapacity, etc) (DB130=23)	2	1.33	2	1.1	11	2.25	4	4.64	19	2.09
Other (DB130=24)	33	22	39	21.67	2	0.41	17	19.77	91	10.07
Household questionnaire completed (DB135=1 to 2)	1415	100	1367	100	1247	100	794	100	4823	100
Interview accepted to database (DB135=1)	1415	100	1367	100	1247	100	794	100	4823	100
Interview rejected (DB135=2)	0	0	0	0	0	0	0	0	0	0

2.3.3.4. Item non-response

The following tables show the share of item non-response for income variables on household and individual level.

Table 7. Distribution of item non-response, household-level variables
\(\left.$$
\begin{array}{llcc}\hline & \begin{array}{c}\text { \% of } \\
\text { households } \\
\text { having } \\
\text { received an } \\
\text { amount }\end{array} & \begin{array}{c}\text { \% of } \\
\text { households } \\
\text { with } \\
\text { missing } \\
\text { values } \\
\text { (before }\end{array} & \begin{array}{c}\text { \% of } \\
\text { households } \\
\text { with partial* } \\
\text { information } \\
\text { (before }\end{array}
$$

imputation)\end{array}\right]\)| impution) |
| :--- |

Table 8. Distribution of item non-response, person-level variables

Income variable	\% of persons 16+ having received an amount	\% of persons with missing values (before imputation)
Gross income components at personal level		
Employee cash or near cash income (PY010G) Non-cash employee income (PY020G)	48.3	0.9
Company car (PY021G)	3.5	0.0
Contributions to individual private pension plans (PY035G)	0.6	0.0
Cash benefits or losses from self-employment (PY050G)	1.3	0.0
Value of goods produced for own consumption (PY070G)	8.2	0.3
Pension from individual private plans (PY080G)	0.1	0.0
Unemployment benefits (PY090G)	0.0	
Old-age benefits (PY100G)	29.8	0.01
Survivor‘s benefits (PY110G)	2.4	0.01
Disability benefits (PY130G)	7.5	0.0
Education-related allowances (PY140G)	2.4	0.03

2.3.3.5. Total item non-response and number of observations in the sample at unit level of the common cross-sectional European Union indicators based on the cross-sectional component of EU-SILC and for equivalised disposable income

Item non-response:
a. Number of persons with no information on most frequent activity status, when applicable (166);
b. Number of persons with no information on household type, when applicable to indicator (19).

Non-response at individual level, i.e. an individual questionnaire is missing (0).
Non-response at household level, i.e. interview rejected for data base DB135=2 (0), address cannot be located $\mathrm{DB} 120=21$ (32) or address unable to access DB120=22 (2).

Table 9. Number of observations and total item non-response

	Number of sample observations (achieved sample size)	Number of sample observations not taken into account due to item non- response	Nonresponse at individual level (if applicable)	Nonresponse at household level (number of households)
At-risk-of-poverty rate after social transfers				
Total ${ }^{1}$	12150	0	NA	32
By age and gender ${ }^{1}$				
men total	5717	0	NA	32
women total	6433	0	NA	32
$0-17$ years	2055	0	NA	32
18-24 years	1085	0	NA	32
25-49 years	3688	0	NA	32
50-64 years	2637	0	NA	32
$65+$ years	2685	0	NA	32
$18+$ years	10095	0	NA	32
18-64 years	7410	0	NA	32
0-64 years	9465	0	NA	32
men 18-24 years	583	0	NA	32
men 25-49 years	1774	0	NA	32
men 50-64 years	1192	0	NA	32
men 65+ years	1073	0	NA	32
men 18+ years	4622	0	NA	32
men 18-64 years	3549	0	NA	32
men 0-64 years	4644	0	NA	32
women 18-24 years	502	0	NA	32
women 25-49 years	1914	0	NA	32
women 50-64 years	1445	0	NA	32
women 65+ years	1612	0	NA	32
women 18+ years	5473	0	NA	32
women 18-64 years	3861	0	NA	32
women 0-64 years	4821	0	NA	32
By most frequent activity status ${ }^{2}$ and gender				
Total 18+ years	9929	166	NA	32
employed	5217	-	NA	32
non-employed	4712	-	NA	32
unemployed	310	-	NA	32
retired	2917	-	NA	32
other inactive	1485	-	NA	32
total men 18+ year	4532	90	NA	32
men, employed	2614	-	NA	32

$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { Number of } \\ \text { sample } \\ \text { observations } \\ \text { (achieved } \\ \text { sample size) }\end{array} & \begin{array}{c}\text { Number of } \\ \text { sample } \\ \text { observations } \\ \text { not taken } \\ \text { into account } \\ \text { due to item } \\ \text { non- }\end{array} & \begin{array}{c}\text { Non- } \\ \text { response at } \\ \text { individual } \\ \text { level (if } \\ \text { applicable) }\end{array} & \begin{array}{c}\text { response at } \\ \text { household } \\ \text { level } \\ \text { (number of } \\ \text { households) }\end{array} \\ & & & & \\ \hline \text { response }\end{array}\right]$
$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { Number of } \\ \text { sample } \\ \text { observations } \\ \text { (achieved } \\ \text { sample size) }\end{array} & \begin{array}{c}\text { Number of } \\ \text { sample } \\ \text { observations } \\ \text { not taken } \\ \text { into account } \\ \text { due to item } \\ \text { non- }\end{array} & \begin{array}{c}\text { Non- } \\ \text { response at } \\ \text { individual } \\ \text { level (if } \\ \text { applicable) }\end{array} & \begin{array}{c}\text { Non- } \\ \text { response at } \\ \text { household } \\ \text { level }\end{array} \\ \text { (number of } \\ \text { households) }\end{array}\right]$

At-risk-of-poverty rate
before social transfers

	Number of sample observations (achieved sample size)	Number of sample observations not taken into account due to item nonresponse	Nonresponse at individual level (if applicable)	Nonresponse at household level (number of households)
including old-age and survivors' benefits				
Total ${ }^{1}$	12150	0	NA	32
By age and gender ${ }^{1}$	5717			
men total	6433	0	NA	32
women total	2055	0	NA	32
$0-17$ years	7410	0	NA	32
18-64 years	2685	0	NA	32
$65+$ years	10095	0	NA	32
$18+$ years	3549	0	NA	32
men, 18-64 years	1073	0	NA	32
men, $65+$ years	4622	0	NA	32
men, $18+$ years	3861	0	NA	32
women, 18-64 years	1612	0	NA	32
women, 65+ years	5473	0	NA	32
women, 18+ years		0	NA	32
Gini coefficient	12150	0	NA	32
Mean equivalised disposable income	12150	0	NA	32

${ }^{1}$ children born in 2007 are included;
${ }^{2}$ the information on activity status refers to the population of individuals aged 18+
${ }^{3}$ all persons aged less then 18 are considered as dependent children, plus those economically inactive persons aged 18-24 living with at least one of their parents.

2.4. Mode of data collection

The method for data collection was paper assisted personal interview (PAPI). If necessary, telephone interviews were allowed. Proxy interviews were allowed for persons temporarily away or in incapacity. To avoid non-response within household proxy interview as an exception was allowed when it was no possibility to make personal interview and another member of household could provide the information. Some data collected by proxy interview were amended by telephone, but method of data collection was not changed in the microdata.
According to Eurostat recommendations for dealing with the individual non-response problem full/partial imputation of missing personal interviews were used (37 cases). In case of full/partial imputation the variable RB250 (data status) = 37 "information completed from record imputation" and flag of variable RB260_F (type of interview) $=-2$.

Table 10. Distribution of household members aged 16 and over by 'data status' (RB250) and rotational group

HOUSEHOLD MEMBERS 16+ (RB245=1 to 3)

	Total	RB250 $=\mathbf{1 1}$	$\mathbf{= 1 2}$	$\mathbf{= 1 4}$	$\mathbf{= 2 1}$	$\mathbf{= 2 2}$	$\mathbf{=} \mathbf{2 3}$	$\mathbf{= 3 1}$	$\mathbf{= 3 2}$	$\mathbf{= 3 3}$
Total	10473	10436	0	37	0	0	0	0	0	0
\%	100	99.65	0	0.35	0	0	0	0	0	0
Rotation 1	2968	2967	0	1	0	0	0	0	0	0
\%	100	99.97	0	0.03	0	0	0	0	0	0
Rotation 2	3002	2994	0	8	0	0	0	0	0	0
\%	100	99.73	0	0.27	0	0	0	0	0	0
Rotation 3	2798	2771	0	27	0	0	0	0	0	0
\%	100	99.04	0	0.96	0	0	0	0	0	0
Rotation 4	1705	1704	0	1	0	0	0	0	0	0
\%	100	99.94	0	0.06	0	0	0	0	0	0

Table 11. Distribution of household members aged 16 and over by 'Type of Interview' (RB260) and rotational group
HOUSEHOLD MEMBERS $16+($ RB245 $=1$ to 3$)$ and RB250 $=11$ or 13

	Total	RB260=1	RB260=2	RB260=3	RB260=4	RB260=5	Missing
Total*	10436	6993	0	1656	42	1745	0
\%	100	67.01	0	15.87	0.4	16.72	0
Rotation 1	2967	1923	0	560	5	479	0
\%	100	64.81	0	18.87	0.18	16.14	0
Rotation 2	2994	1844	0	646	9	495	0
\%	100	61.59	0	21.58	0.3	16.53	0
Rotation 3	2771	2118	0	171	19	463	0
\%	100	76.43	0	6.17	0.69	16.71	0
Rotation 4	1704	1108	0	279	9	308	0
\%	100	65.02	0	16.37	0.53	18.08	0
*Full imputed not included							

2.5. Interview duration

Mean duration of household interview (HB100) - 28 minutes.
Mean duration of personal interview (PB120) - 23 minutes.
Mean interview duration per household - 78 minutes.

3. Comparability

3.1. Basic concepts and definitions

The reference population

No difference to the common definition. The target population of EU-SILC is all persons living in private households within the national territory of Lithuania at the time of data collection. Collective households and institutions are excluded from the target population.

The private household definition

No difference to the common definition. The private household is defined as a person living alone or a group of people, who live together in the same private dwelling and share expenditures, including the joint provision of the essentials of living.

The household membership

No difference to the common definition.
The income reference period used
No difference to the common definition. The income reference period was a fixed twelvemonth period, namely the last calendar year. In the 2008 operation income data were collected for the reference year 2007.

The period for taxes on income and social insurance contributions
No difference to the common definition. Taxes on income and social insurance contributions, as well as tax repayments and receipts refer to the income reference period (year 2007).

The reference period for taxes on wealth
No difference to the common definition. Taxes on wealth paid during the income reference period (year 2007) were recorded.

The lag between the income reference period and current variables
The lag between the end of the income reference period and current variables ranges from 4 to 8 months.

The total duration of the data collection of the sample

The fieldwork period started on $14^{\text {th }}$ of April 2008 and ended on the $14^{\text {th }}$ of. 81.8% of households were interviewed during the first 3 months and on 18.2% were interviewed in July and August.

Basic information on activity status during the income reference period
This information was collected with the questionnaire by an activity calendar covering each month of the income reference period.

3.2. Components of income

3.2.1. Differences between the national definitions and standard EU-SILC definitions

Imputed rent

For estimating of Imputed rent we used two step model.
1 step. Stratification method, using data from Housing Rental Price Survey was applied.
2 step. Log-linear regression method was used to estimate the rest of the missing values.

Cash or near cash employee income

To calculate Sickness benefits (PY120) data from the State Social Insurance Fund Board and the State Tax Inspectorate were used. The algorithm based on country health insurance system was used for missing values.

No-cash employee income

All components of this variable were collected. The values related to company car were recorded under variable PY021 and were added to the calculation variables HY010, HY020, HY022 and HY023.

Cash benefits or losses from self-employment

The self-employment income was collected as the amount of money drawn out of the business for household, personal use. Income from agriculture, included in this variable, was calculated as difference of total revenue from agricultural activity and total expenditure on it.

Value of goods produced for own-consumption
Variable was collected and recorded to microdata file, but was not added to the calculation variables HY010, HY020, HY022 and HY023.
The quantities of products, used for own consumption, were collected during interview. The value of goods produced for own consumption was estimated by multiplying quantity by market prices of goods from the Household Budget Survey deducting expenses incurred in the production.

Gross monthly earnings for employees

Variable was not collected because EU-SILC is not used to calculated gender pay gap.

3.2.2. The source or procedure used for the collection of income variables

Where applicable the EU-SILC income target variables were split into sub-components. The sub-components were defined according to the Lithuanian regulations and benefit system. All data related to income variables were collected from interviews.
Administrative data were used for making the survey income data more accurate or for supplementing them. The State Social Insurance Fund Board data and the State Tax Inspectorate under the Ministry of Finance of the Republic of Lithuania data have been linked to sample data and used for checking cash or near-cash employee income (PY010, PY120), social insurance contributions and taxes on income (components of HY140), old-age benefits (PY100). Maternity and maternity/paternity allowances (component of HY050), dividends from capital investments (component of HY090) have been taken from the administrative data; we just asked if person received maternity allowance, dividends or not.

3.2.3. The form in which income variables at component level have been obtained

Employee cash and near-cash income (PY010), self-employment income (PY050), unemployment benefits (PY090), family/children related allowances (HY050), interest,
dividends, profit from capital investments (HY090), income received by people aged under 16 (HY110) were collected in net and/or gross. The remaining variables were collected only in gross.

3.2.4. The method used for obtaining income target variables in the required form

The gross-net/net-gross conversion was used for either gross or net was collected. Conversion algorithms were created on the bases of country tax system. All income variables that are subjected to taxation and/or social insurance contribution were recorded gross and net in to the microdata files. Other income variables were recorded only gross.

4. Coherence

This section will compare the EU-SILC data to Household Budget Survey (HBS), wage statistics and administrative data.
The HBS is continuous survey. The survey conducted in line with the current methodology has been carried out since 1996. The HBS uses two data collection methods combined into one: the interview conducted by an interviewer and self-registration of particular household indicators. Social and economic information on household members, their living conditions and income are collected during the interview. HBS was the source for calculation income inequality indicators until started EU-SILC survey.
4.1. Comparison of income target variables and number of persons who received income from each 'income component', with external source

There are differences between EU-SILC and HBS income components definitions. Only comparable income components are presented in Table 12.

Table 12. Comparison of income target variables and number of persons/households who received income components

Income component	EU-SILC 2008 Annual number of people, thousand	HBS 2007	Other sources*
Cash or near cash employee income (PY010N)	1472.3	1371.6	1291.8
Old-age benefits (PY100) 621.9 677.5 599.2 Survivors benefits (PY110) 64.7 36.9 \ldots Housing allowances (HY070) 70.8 38.7 \ldots			

[^0]The number of people receiving employee income is higher in SILC than in the HBS and wage statistics. In HBS, the yearly income figures are derived from monthly data. People who were employed, but did not receive income during the survey month (being on vacation, started job and so on) were not included in this category. In case of wage statistics, this figure is lower whereas the job according verbal agreement has not been taken into account.
The estimate of number of persons receiving old-age benefits is the same in SILC and in HBS. This is due to old-age pensions from foreign countries and disability benefits paid after the standard retirement age being included in SILC variable that have not been taken into account in the case of administrative source. The differences between SILC and HBS are not substantial.
The estimate of number of people receiving survivor's benefits is higher in SILC than in HBS. The reason of the difference is in assignment of survivor benefits value for eligible person. In SILC values of benefit are recorded to each person 16 years and older who receive this benefits. Whereas in HBS, values of benefit received by persons younger than 18 years old are recorded to the older persons in that household.
The number of households receiving housing allowances is lower in the HBS. This difference is related to the survey design of HBS and the seasonal aspect of housing allowances. As was noted above, the yearly income figures are derived from monthly data in HBS. The compensations to cover expenditure of the heating of dwelling are the most part of housing allowances and are paid in winter time. So, the number of households receiving them is lower in HBS data.

4.2. Comparison of other target variables with external source

Table 13. Distribution of households by type of dwelling

Dwelling type	EU-SILC 2008	HBS 2008
	$\%$	$\%$
Detached house	32,5	28,5
Semi-detached or terraced house	8,4	9,1
Apartment or flat	59,1	62,2
Some other kind of accommodation	0,0	0,2
Total	100	100

Table 14. Distribution of households by amenities in the dwellings

Amenities in the dwellings	EU-SILC 2007 $\%$	HBS 2008 $\%$
Bath or shower	80,0	81,9
Indoor flushing toilet	79,1	81,8

The estimates of the number of household by household type and amenities in the dwellings are almost the same in EU-SILC and HBS.
Finally, in Table 15 there are reported data for the distribution of population by self-defined economic status. This variable is not absolutely the same in the SILC and HBS. The main activity status is self-defined in EU-SILC.

Table 15. Distribution of population aged 16 and over by self-defined activity status

Activity status	EU-SILC 2008 $\%$	HBS 2008 $\%$
At work	55,3	56,5
Unemployed	4,2	4,8
Pupil, student	10,7	9,6
In retirement	21,7	21,9
Permanently disabled	4,3	4,0
Other inactive person	3,2	3,2
Total	100	100

Regina Deveikyte
Head, Living Standard Statistics Division
Statistics Lithuania
Phone +370 52364919
e-mail: regina.deveikyte@stat.gov.lt

[^0]: * Wage statistics in the case of PY010 and administrative source in the case of PY100

