Implementing
MapReduce programs:
RHadoop

Antonino Virgillito

RHadoop

Collection of packages that allows integration of R
with HDFS and MapReduce

Hadoop provides the storage while R brings the
processing

Just a library

e Not a special run-time, Not a different language, Not
a special purpose language

Incrementally port your code and use all packages

Requires R installed and configured on all nodes in the
cluster

Prerequisites

Installation of Hadoop cluster
Installation of R
Installation of RHadoop packages

Environment variables
« HADOOP_CMD
e« HADOOP_ STREAMING

As configured in the Sandbox:

export HADOOP STREAMING=/usr/lib/hadoop-mapreduce/hadoop-streaming-2.2.0.2.0.6.0-102.jar

export HADOOP CMD=/usr/bin/hadoop

RHadoop Packages

e rhdfs

e Interface for reading and writing files from/to a
HDFS cluster

* rmr2
e Interface to MapReduce through R

 rhbase
e Interface to HBase

rhdfs

 As Hadoop MapReduce programs use HDFS for
taking their input and writing their output, it is
necessary to access them from R console

« The R programmer can easily perform read and
write operations on distributed data files.

« Basically, rhdfs package calls the HDFS API in
backend to operate data sources stored on HDFS.

rhdfs Functions

File Manipulations

e hdfs.copy, hdfs.move, hdfs.rename, hdfs.delete, hdfs.rm,
hdfs.del, hdfs.chown, hdfs.put, hdfs.get

 File Read/Write

o hdfs.file, hdfs.write, hdfs.close, hdfs.flush, hdfs.read,
hdfs.seek, hdfs.tell, hdfs.line.reader, hdfs.read.text.file

» Directory

e hdfs.dircreate, hdfs.mkdir
« Utility

o hdfs.lIs, hdfs.list.files, hdfs.file.info, hdfs.exists
« Initialization

o hdfs.init, hdfs.defaults

rmr2

rmr2 is an R interface for providing Hadoop
MapReduce facility inside the R environment.

So, the R programmer needs to just divide their
application logic into the map and reduce phases
and submit it with the rmr2 methods.

After that, rmr2 calls the Hadoop streaming
MapReduce API with several job parameters as
input directory, output directory, mapper,
reducer, and so on, to perform the R MapReduce
job over Hadoop cluster.

rhbase

R interface for operating the Hadoop HBase data
source stored at the distributed network via a
Thrift server.

« The rhbase package is designed with several
methods for initialization and read/write and

table manipulation operations.

Our First mapreduce Job

« Compute the first thousand squares
Regular R implementation

small.ints = 1:1000
sapply(small.ints, function(x) x"2)

mapreduce equivalent

library('rhdfs')
library('rmr2')
hdfs.init ()

small.ints = to.dfs(1:1000)
mapreduce (
input = small.ints,
map = function(k, v) cbind(v, v*2))

Eurostat

to.dfs

« It is not possible to write out big data with to.dfs, not in a
scalable way.
o useful for writing test cases, learning and debugging
« to.dfs can put the data in a file of your own choosing, but if
you don't specify one it will create temp files and clean
them up when done.

 The return value is something we call a big data object.

 You can assign it to variables, pass it to other rmr
functions, mapreduce jobs or read it back in.

« It is a stub, that is the data is not in memory, only some
information that helps finding and managing the data.

« This way you can refer to very large data sets whose size
exceeds memory limits.

mapreduce

« The mapreduce function takes as input a set of named
parameters

e input: input path or variable

input.format: specification of input format
output: output path or variable

map: map function

reduce: reduce function

 map and reduce function present the usual interface
« A call to keyval(k,v) inside the map and reduce

function is used to emit respectively intermediate and
output key-value pairs

from.dfs

« from.dfs is complementary to to.dfs and returns a
key-value pair collection that can be passed to
mapreduce jobs or read into memory

o watch out, it will fail for big data!

« from.dfs is useful in defining map reduce algorithms
whenever a mapreduce job produces something of
reasonable size, like a summary, that can fit in
memory and needs to be inspected to decide on the
next steps, or to visualize it.

« It is much more important than to.dfs in production
work.

Our Second mapreduce Job

Creates a sample from the binomial distribution and
counts how many times each outcome occurred

library('rhdfs')
library('rmr2')
hdfs.init ()

groups = rbinom(32, n = 50, prob = 0.4)
groups = to.dfs(groups)
from.dfs (
mapreduce (
input = groups,
map = function(., v) keyval(v, 1),
reduce =
function(k, wvv)
keyval (k, length (vv))
))

European

Commission
I

WordCount in R

wordcount = wc.reduce =
fuﬁction(function (word, counts) {
input, keyval (word, sum(counts)) }
output = NULL,
pattern = " ") { mapreduce (
input = input ,
wC.map = output = output,
function (., lines) { input.format = "text",
keyval (map = wc.map,
unlist (reduce = wc.reduce,
strsplit (combine = T) }
X = lines,
split = pattern)),
1)}

European
Commission

Reading delimited data

tsv.reader = function(con, nrecs) {
lines = readLines(con, 1)
if (length(lines) == 0)
NULL
else {
delim = strsplit(lines, split = "\t")
keyval (
sapply(delim, function(x) x[1]),
sapply(delim, function(x) x[-1]))}}
freg.counts = mapreduce (
input = tsv.data,
input.format = tsv.format,
map = function(k, v) keyval(v[1l,], 1),
reduce = function(k, vv) keyval (k, sum(vv)))

European

Commission
[|
Reading named columns
tsv.reader = function(con, nrecs) {

lines = readLines (con, 1)

if (length(lines) == 0)
NULL

else {
delim = strsplit(lines, split = "\t")

keyval (sapply(delim, function(x) x[1]),
data.frame (

location = sapply(delim, function (x) x
name = sapply(delim, functio
value = sapply(delim, function(x) x[4]
freg.counts = mapreduce (
input = tsv.data,
input.format = tsv.format,
map = function(k, v) {
filter = (v$name == "blarg")
keyval (k[filter], log(as.numeric(vSvaluel[filter])))},
reduce = function (k, vv) keyval (k, mean(vv)))

[
n
)

2
(
)

1)
X)
) }

4

}

x[31),

