
Eurostat

THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION

Implementing
MapReduce programs:
RHadoop

Antonino Virgillito

Eurostat

RHadoop

• Collection of packages that allows integration of R
with HDFS and MapReduce

• Hadoop provides the storage while R brings the
processing

• Just a library
• Not a special run-time, Not a different language, Not

a special purpose language

• Incrementally port your code and use all packages

• Requires R installed and configured on all nodes in the
cluster

Eurostat

Prerequisites

• Installation of Hadoop cluster

• Installation of R

• Installation of RHadoop packages

• Environment variables

• HADOOP_CMD

• HADOOP_STREAMING

As configured in the Sandbox:

export HADOOP_STREAMING=/usr/lib/hadoop-mapreduce/hadoop-streaming-2.2.0.2.0.6.0-102.jar

export HADOOP_CMD=/usr/bin/hadoop

Eurostat

RHadoop Packages

• rhdfs

• Interface for reading and writing files from/to a
HDFS cluster

• rmr2

• Interface to MapReduce through R

• rhbase

• Interface to HBase

Eurostat

rhdfs

• As Hadoop MapReduce programs use HDFS for
taking their input and writing their output, it is
necessary to access them from R console

• The R programmer can easily perform read and
write operations on distributed data files.

• Basically, rhdfs package calls the HDFS API in
backend to operate data sources stored on HDFS.

Eurostat

rhdfs Functions

• File Manipulations
• hdfs.copy, hdfs.move, hdfs.rename, hdfs.delete, hdfs.rm,

hdfs.del, hdfs.chown, hdfs.put, hdfs.get

• File Read/Write
• hdfs.file, hdfs.write, hdfs.close, hdfs.flush, hdfs.read,

hdfs.seek, hdfs.tell, hdfs.line.reader, hdfs.read.text.file

• Directory
• hdfs.dircreate, hdfs.mkdir

• Utility
• hdfs.ls, hdfs.list.files, hdfs.file.info, hdfs.exists

• Initialization
• hdfs.init, hdfs.defaults

Eurostat

rmr2

• rmr2 is an R interface for providing Hadoop
MapReduce facility inside the R environment.

• So, the R programmer needs to just divide their
application logic into the map and reduce phases
and submit it with the rmr2 methods.

• After that, rmr2 calls the Hadoop streaming
MapReduce API with several job parameters as
input directory, output directory, mapper,
reducer, and so on, to perform the R MapReduce
job over Hadoop cluster.

Eurostat

rhbase

• R interface for operating the Hadoop HBase data
source stored at the distributed network via a
Thrift server.

• The rhbase package is designed with several
methods for initialization and read/write and
table manipulation operations.

Eurostat

Our First mapreduce Job

• Compute the first thousand squares

Regular R implementation

mapreduce equivalent

small.ints = 1:1000

sapply(small.ints, function(x) x^2)

library('rhdfs')

library('rmr2')

hdfs.init()

small.ints = to.dfs(1:1000)

mapreduce(

input = small.ints,

map = function(k, v) cbind(v, v^2))

Eurostat

to.dfs

• It is not possible to write out big data with to.dfs, not in a
scalable way.
• useful for writing test cases, learning and debugging

• to.dfs can put the data in a file of your own choosing, but if
you don't specify one it will create temp files and clean
them up when done.

• The return value is something we call a big data object.
• You can assign it to variables, pass it to other rmr

functions, mapreduce jobs or read it back in.
• It is a stub, that is the data is not in memory, only some

information that helps finding and managing the data.
• This way you can refer to very large data sets whose size

exceeds memory limits.

Eurostat

mapreduce

• The mapreduce function takes as input a set of named
parameters
• input: input path or variable

• input.format: specification of input format

• output: output path or variable

• map: map function

• reduce: reduce function

• map and reduce function present the usual interface

• A call to keyval(k,v) inside the map and reduce
function is used to emit respectively intermediate and
output key-value pairs

Eurostat

from.dfs

• from.dfs is complementary to to.dfs and returns a
key-value pair collection that can be passed to
mapreduce jobs or read into memory
• watch out, it will fail for big data!

• from.dfs is useful in defining map reduce algorithms
whenever a mapreduce job produces something of
reasonable size, like a summary, that can fit in
memory and needs to be inspected to decide on the
next steps, or to visualize it.

• It is much more important than to.dfs in production
work.

Eurostat

Our Second mapreduce Job

Creates a sample from the binomial distribution and
counts how many times each outcome occurred

library('rhdfs')

library('rmr2')

hdfs.init()

groups = rbinom(32, n = 50, prob = 0.4)

groups = to.dfs(groups)

from.dfs(

mapreduce(

input = groups,

map = function(., v) keyval(v, 1),

reduce =

function(k, vv)

keyval(k, length(vv))

))

Eurostat

WordCount in R

wordcount =

function(

input,

output = NULL,

pattern = " "){

wc.map =

function(., lines) {

keyval(

unlist(

strsplit(

x = lines,

split = pattern)),

1)}

wc.reduce =

function(word, counts) {

keyval(word, sum(counts))}

mapreduce(

input = input ,

output = output,

input.format = "text",

map = wc.map,

reduce = wc.reduce,

combine = T)}

Eurostat

Reading delimited data

tsv.reader = function(con, nrecs){

lines = readLines(con, 1)

if(length(lines) == 0)

NULL

else {

delim = strsplit(lines, split = "\t")

keyval(

sapply(delim,function(x) x[1]),

sapply(delim,function(x) x[-1]))}}

freq.counts = mapreduce(

input = tsv.data,

input.format = tsv.format,

map = function(k, v) keyval(v[1,], 1),

reduce = function(k, vv) keyval(k, sum(vv)))

Eurostat

Reading named columns

tsv.reader = function(con, nrecs){

lines = readLines(con, 1)

if(length(lines) == 0)

NULL

else {

delim = strsplit(lines, split = "\t")

keyval(sapply(delim, function(x) x[1]),

data.frame(

location = sapply(delim, function(x) x[2]),

name = sapply(delim, function(x) x[3]),

value = sapply(delim, function(x) x[4])))}}

freq.counts = mapreduce(

input = tsv.data,

input.format = tsv.format,

map = function(k, v) {

filter = (v$name == "blarg")

keyval(k[filter], log(as.numeric(v$value[filter])))},

reduce = function(k, vv) keyval(k, mean(vv)))

