Module 1. Methods of statistical inference: design-based, model-based and algorithm-based
Introduction

The context of Official Statistics

• Budget restrictions to carry out traditional surveys
• Increasing concern for response burden
• Increasing non-response
• New sources of available data:
 ➢ Administrative data
 ➢ Big Data sources: traffic sensors, M2M transactions, social media, satellite images...
• Development of mathematical-statistical methods and IT tools that allow for other forms of data treatment
Introduction
The objectives of statistical inference

- The purpose of statistical inference is to obtain information about a population (finite or infinite) from a sample from this population.

- Stochastic assumptions about the individual observations and/or the population are made.

- Statistical information of interest includes totals, means, proportions, ratios, quantiles, etc. or the probability distribution of a random variable.
Introduction
Overview of different modes of inference (paradigms)

- Design-based
- Model-assisted
- Model-based
- Algorithm-based

predictive
Traditionally used by National Statistical Institutes

- Use of surveys to collect data
- NSIs prefer not to rely on model assumptions, particularly if they are not verifiable
- Statistical (mathematical) models may be difficult to understand, communicate or even calculate in a production environment
- The concepts of random sample, sampling error, weighting observations, etc. are familiar to (educated) users of Official Statistics
Design-based inference

Design-based estimation

- Estimators (of a mean, a total, a proportion) are obtained by expanding or weighting the observations in the sample with survey weights
 - Survey weights are derived from the sample design and available auxiliary information

- The statistical properties of estimators are based on the probability distributions from the sampling design
 - Design-based estimators have «good» statistical properties such as asymptotic unbiasedness
Horvitz-Thompson estimator of a total

\[\hat{Y}_{HT} = \sum_{i \in S} \frac{1}{\pi_i} y_i \]

where \(\pi_i \) is the probability of selection of unit \(i \), and \(1/\pi_i \) is the weight of unit \(i \) calculated on the basis of the design:

- Stratification (auxiliary variables that define the strata)
- Sample size
- Corrections for non-response, calibration, etc.
Design-based inference

Limitations

- Design-based inference may not be suitable when
 - samples are small
 - in presence of non-sampling errors
 - discontinuities in survey design (e.g. change in data collection mode, new classifications, methodological change of concepts)
 - Design-based estimators do not take into account the changes and cannot separate the «real» change from the methodological change
Model-assisted inference

Introduction

- Design-based estimators of the parameter of a variable can be improved by using auxiliary information and modelling the relationship between the variable and the auxiliary information (=model-assisted)
Model-assisted inference

Model-assisted estimation – theoretical example

- HT estimator obtained from a linear regression model that relates the parameter to auxiliary information
 - Observed \((x_k; y_k)\) for a sample \(S\) (e.g. administrative and survey data), \(x\) are observed for the whole \(U\) universe
 - \(\hat{X}_{HT} = \sum_{i \in S} \frac{1}{\pi_i} x_i\) is the grossed-up total of observed auxiliary \(x\) values
 - \(X = \sum_{i \in U} x_i\) is the known total of auxiliary \(x\) values
 - \(\hat{Y}_{HT} = \sum_{i \in S} \frac{1}{\pi_i} y_i\) is the Horvitz-Thompson estimate
 - \(\hat{Y}_R = \hat{Y}_{HT} + b \cdot (X - \hat{X}_{HT})\) is the regression (=model-based) estimate based on the regression model \(y = a + b \cdot x\) estimated from the sample of observed \((x_k; y_k)\)
Model-based and model-assisted inference

Official statistics: examples of application

- Generalised regression estimator (GREG) widely used by NSIs for calibration
 - Adjusts totals for sub-populations (consistency across tables)
 - Adjusts to known totals
- Small Area Estimation (estimation borrowing strength over space)
- Surveys based on panels (estimation borrowing strength from the past)
- Modelling survey discontinuities
- Integration of sources in National Accounts
- Hedonic Price Indices
- Seasonal adjustment of statistical series
Algorithm-based inference

Introduction

• In the algorithmic approach, the equivalent of fitting a model is \textbf{tuning an algorithm, so that it predicts well}

• It is generally impossible to express algorithmic methods analytically in terms of a mathematical expression

• In the algorithmic approach, the data for which both x and y are known is split into two parts
 • \textbf{TRAINING SET:} part is used to tune the algorithm
 • \textbf{TEST SET:} part used to evaluate – or test – the predictive capabilities of the trained algorithm
Algorithm-based inference

Types of data

- collected from *units* through a **targeted survey** (e.g. Structural Business Survey, Labour Force survey)

- collected from *units* in support of some **administrative process** (e.g. tax records, unemployment benefits)

- other types, registering *events* (e.g. a transaction, an e-mail, a Tweet) generated as by-products of **processes unrelated to statistics or administration**
Algorithm-based inference

Types of data - characteristics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Survey data</th>
<th>Admin data</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Records are units of a target population</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Target variables are directly available</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Auxiliary variables are directly available</td>
<td>Yes</td>
<td>Often</td>
<td>No</td>
</tr>
<tr>
<td>Data preparation/ conversion is needed</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Data covers the complete target population</td>
<td>No</td>
<td>Often</td>
<td>Rarely</td>
</tr>
<tr>
<td>Data are (almost) representative</td>
<td>Usually</td>
<td>Usually</td>
<td>No</td>
</tr>
<tr>
<td>Susceptibility to measurement error</td>
<td>High</td>
<td>Medium</td>
<td>low</td>
</tr>
</tbody>
</table>

Source: Buelens *et al.* (2012)
Algorithm-based inference

Theoretical examples

• Similar to the model-based estimator, the algorithmic estimator is

\[\hat{Y}_{Alg} = \sum_{k \in S} y_k + \sum_{k \in R} F(x_k) \]

• For some function \(F() \) which maps the observed \(x \) to the corresponding \(y \) within \(S \) (training set of units for which \(y \) is known), the set \(R \) contains the population units with unknown \(y \).

• Uncertainty of this estimator arises from the imperfect predictive power of the algorithm, and is assessed on the test set using some cost function.
Algorithm-based inference

Examples in official statistics

- **Central Statistics Office of Ireland**: automatic coding system for Classification of Individual Consumption by Purpose (COICOP) assignment for their Household Budget Survey, using previously coded records as training data.

- **Statistics New Zealand**: Support Vector Machines (SVM) to improve coding of variables Occupation and Post-school Qualification, using two disjoint sets of observations, each of size 10,000, from Census 2013 data for training and testing (50% correctness).

- **Statistics Portugal**: classification trees (a type of decision trees whose response variables are categorical) for error detection in foreign trade transaction data.

- **US Department of Agriculture**: hierarchical clustering to reduce the number of Quarterly Agriculture Survey (QAS) questionnaire versions (states x crops).
Algorithm-based inference

Examples in official statistics (2)

- **Italian National Institute of Statistics**: substituting (fully or partially) ICT in Enterprises surveys by collecting data via website scraping and extracting information using machine learning methods.

- **Statistics Canada**: use of satellite imaging data to assist with estimation of crop yields. Field surveyors were sent to corresponding actual locations to ascertain crop types and yields; these were used as response variables. Probabilistic image processing algorithms were used to learn and predict the field observations based on the satellite data.
References

- CROS Portal on MEMOBUST:
 - Generalised Regression Estimator (Method)
 - Calibration (Method)