Establishing Environmental Groundwater Quality Standards

Dietmar MÜLLER

Outline of the Presentation

- BRIDGE – The Project (FP6 – policy support)
- Methodology Framework (Concepts)
- Specific Results (practicalities)
 - Determination of Natural Background Levels (NBL)
 - Ecosystem Receptors
 - Groundwater as Receptor
MAIN OBJECTIVES

- Status Assessment
 - Large scale issues across GW-bodies
 - Threshold Values
- Prevent or Limit
 - Protecting quality at local scale (!)
 - Generic Standards (‘Regulatory Value’; Limit Values)
- Trend Assessment

STATUS ASSESSMENT (GW-BODY) & PROTECTION OF QUALITY

GOOD STATUS
Threshold Values
GW-Body specific

Receptors: Aquatic and terrestrial ecosystems? Links with SW status and EQS

Trend identification and reversal

Local Controls

Prevent / Limit

Generic Standards

Risks of pollution from diffuse/point sources (incl. landfills, wastes, contaminated soils, agriculture)

Run-off

Drinking water abstraction

Construct Products

Urban waste

Time
OBJECTIVES

European approach to derive *environmental thresholds* for groundwater bodies

- applicable at different levels (national, river basin or single groundwater bodies)
- reflecting multitude of possible pressures and variety of aquifer characteristics
- consistent to the WFD and other community legislation

- scientifically sound and practicable
Building a Common Approach
Underlying Concepts

- CONCEPTUAL MODEL
 - pressures, processes, pathways & receptors
- SIGNIFICANT IMPACT TO RECEPTOR
 - a risk-based approach
- RECEPTORS
 - Aquatic ecosystems
 - Dependent terrestrial ecosystems (GWDTE)
 - ‘groundwater’
- TIERED APPROACH
 - Linking thresholds and status assessment

Groundwater Quality & Status

INDICATION FOR POOR STATUS
- Polluted groundwater (significant impacts possible)
- Receptor-oriented standard
- Quality poor due to naturally elevated concentrations, but no human impact (chemical status: good)
- Variability in natural quality due to hydrochemistry
- Level of detection/quantification

GOOD STATUS
- Undisturbed groundwater
- Natural quality

NATURAL QUALITY

ANTHROPOGENICALLY INFLUENCED
- Alteration of groundwater quality

INcreasing pollutant concentration

INcreasing concentration
Tier 1
Initial Analysis

Tier 2
Detailed Analysis

Stage 2
[Impact Assessment]

Data requirements
work, costs

Conservatism

Uncertainty

Protection of
Environmental resources
PROPOSED CRITERIA

- Natural Background Level
- Reference Values (dependent on receptor choice)
- Dilution Factor (surface water)
- Attenuation Factor (surface water)

Natural Background Levels

NBL’s might be derived on the basis of

- GW-samples free of human impact
- Hydro-chemical simulation of solution processes
- *Pre-selection method (using indicators)*

- Component separation by concentration distribution analysis
Tiered approach to derive NBLs

European Aquifer Typologies for referencing NBLs

NBLs are different from one typology to the other

Further criteria:
- hydrodynamics (recharge, residence time, topography, leakage...)
- redox conditions
- particularities (organic matter, dykes...)
- geological age

Map (draft 2006): Research Centre Jülich
Austrian case study
NBL calculation & comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NBL (BRIDGE) S. Vienna basin</th>
<th>NBL Geohint National</th>
<th>DWS / AA-EQS or national MPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium mg/l</td>
<td>123</td>
<td>133,6</td>
<td>n. a. / n. a.</td>
</tr>
<tr>
<td>Magnesium mg/l</td>
<td>39,4</td>
<td>40,8</td>
<td>n. a. / n. a.</td>
</tr>
<tr>
<td>Boron mg/l</td>
<td>0,041</td>
<td>0,04</td>
<td>1 / n. a.</td>
</tr>
<tr>
<td>Chloride mg/l</td>
<td>41,2</td>
<td>32</td>
<td>200 (Ind.) / n. a.</td>
</tr>
<tr>
<td>Sulfate mg/l</td>
<td>164</td>
<td>80</td>
<td>250 (Ind.) / n. a.</td>
</tr>
<tr>
<td>Phosphate mg/l</td>
<td>0,08</td>
<td>0,14</td>
<td>n. a. / n. a.</td>
</tr>
<tr>
<td>Chrome µg/l</td>
<td>0,9</td>
<td>4</td>
<td>50 / 8,5 (national MPA)</td>
</tr>
<tr>
<td>Arsenic µg/l</td>
<td>1</td>
<td>4</td>
<td>10 / 24 (national MPA)</td>
</tr>
<tr>
<td>Cadmium µg/l</td>
<td>0,16</td>
<td>0,2</td>
<td>5 / 0,08 – 0,25 (AA-EQS)</td>
</tr>
<tr>
<td>Nickel µg/l</td>
<td>1,9</td>
<td>4</td>
<td>20 / 20 (AA-EQS)</td>
</tr>
</tbody>
</table>

TIERED APPROACH
Aquatic Ecosystems

- matching risk characterisation for surface water vs. groundwater or
- other evidence for a substantial transfer of pollutants

Proposal EQS [COM(2006) 397 final!]

- AA-EQS (annual average)

 T4: Attenuation
 T3: Dilution
 T2: EQS
 T1: NBL
Receptor ‘surface water’

\[c_g = \frac{c_r}{BFI} - \frac{c_s(1 - BFI)}{BFI} \]

- BFI = base flow index
- \(c_r \) = river background conc.
- \(c_s \) = river threshold
- \(c_g \) = groundwater threshold

METHODS OF DETERMINING BASEFLOW
- Age analysis, by assessment of hydrochemical mixing
- Tracer analysis, Temperature or Water Quality surveys
- Low flow assessment
- **Hydrograph separation**
- Numerical modelling of flows (deterministic or statistical)

METHODS OF DETERMINING ATTENUATION
- Comparison of monitoring results (GW & SW)
- Appropriate decaying transport models

⇒ **Choice of methods: Member States!**
Area:
~1046 km²
68% Farmland
16% Urban areas

Population:
- OPRB: 250,000
- ODENSE (City): ~200,000

Figure: Courtesy Fyns Amt (County of Fyn)

Cases study: Odense River Basin Conceptual model

- **DRAINAGE SYSTEM**
- **SAND AQUIFERS**
- **CLAYEY TILLS**
Groundwater Threshold Value
According to the Aquatic ecosystem

N to be reduced by 67%
P by 50%

P to be reduced by 30%
P by 50%

Dilution/Attenuation for N: 1 / 0.5
Threshold Value: NO₃ < 20 mg/l (!)

Dependent Terrestrial Ecosystems

- lack of legal and scientific background
- general assumption: aquatic & terrestrial ecosystems (e.g. wetlands) need to adapt to similar conditions

Start procedure if
- monitored damages or

control other possible reasons
- exclude other possible impacts
- groundwater quantity
- pH, buffering effects, oxygen & nutrient concentrations

specific investigation by ecologists
Groundwater as a Receptor

- Groundwater should be protected in its own rights
- No agreed common understanding of the WFD and the GWD and the role of threshold values

Possible Approaches

- Groundwater as a resource (!)
 - Groundwater ‘itself’
 - (Groundwater as an ecosystem)

Policy discussions/decisions:

WFD Common Implementation Strategy: WG C

Groundwater ‘itself’

Threshold at Tier 2

- Background Values
 - Pragmatic adaptation at low natural concentrations
 - No ‘zero-pollution’-approach
 - Relating NBL to Reference-Values (e.g. Drinking Water Standards)
Overview on receptor specific screening

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Criteria for GW Chemical Status</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water</td>
<td></td>
<td>AA-EQS</td>
</tr>
<tr>
<td>GWDTE</td>
<td></td>
<td>special regime</td>
</tr>
<tr>
<td>DWPA other uses</td>
<td>saline intrusion widespread pollutants significant impairment</td>
<td>NBL QS (see WFD) use related</td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
<td>NBL use related</td>
</tr>
</tbody>
</table>

Characterisation process

Understanding the system?

- **GWD:**
 - single monitoring stations
 - GW-body (aggregated data)

Delineation of GW-bodies
- Extension across different aquifer types
- Representative for e.g.
 - recharge zone
 - aquifer storage
 - receptor

Problems, e.g.
- NBL derivation
- Depth variations
- Considering attenuation
Environmental Threshold Values

PREREQUISITES (WFD & GWD):
- may be GW-body specific (GWD)
 - even at the level of GW-bodies sensitive to delineation across aquifers with different hydrogeochemical characteristics (!)
- specific pollutants: see risk characterisation (Art. 5 reports!)
- receptor(s) need to be defined clearly!
 - Receptor ‘Groundwater’: management decision
 - **relevant TV**: according to sensitive receptor

ACKNOWLEDGEMENTS:
- **BRIDGE** was funded by the European Commission, DG Research within FP 6 under Priority 8 [Contract No. 006538 (SSPI) – Scientific Support to Policies]
- **BRIDGE partners & all co-workers, especially**
 - Anne-Marie FOUILLAC, Helene PAUWELS, Ariane BLUM (BRGM), Jasper GRIFFIOEN, Hilde PASSIER (TNO); Kim DAHLSTROM (Danish EPA); Frank WENDLAND, Ralf KUNKEL (FZ Jülich); Rüdiger WOLTER (Umweltbundesamt); Cath TOMLIN, Jan HOOKEY, Alwyn HART (Env. Agency England & Wales); Klaus HINSBY (GEUS), Teresa MELO (Univ. Aveiro); Juan GRIMA, Carlos MARTINEZ (IGME)

THANK YOU FOR ATTENTION!