

European Coordination Group for Notified Bodies in Legal Metrology

Document 2

2025

Documentation: Digital Certificate of Conformity for Quality Assurance (D-CoC QA)

Date: 16 07 2025

NoBoMet Document 2:2025

Documentation: Digital Certificate of Conformity for Quality Assurance (D-CoC QA)

NoBoMet is the European Coordination Group of Bodies notified by the European Commission for the Directives 2014/31/EU and 2014/32/EU.

The group is established by the European Commission based on the decision at the Working Group Measuring Instruments meeting in 2019.

This document is a document of the NoBoMet Project group "Digital certificates of conformity in Metrology" to provide information to notified bodies.

This document is purely informative and does not itself impose any restrictions or additional technical requirements beyond those contained in relevant EU-Directives.

Published by:

NoBoMet

E-mail: secretariat@nobomet.org

Website: www.nobomet.org

CONTENTS

1. Introduction	
2. The Principle of Defining the Data Structure	6
3 Specification of the Data Structure	
4. References	18
5 Version control	10

1. Introduction

Digital Certificate of Conformity for Quality Assurance (D-CoC QA) is a data structure describing the content part of a digital certificate of conformity related to the quality assurance evaluation as part of product certification (cf. EN ISO/IEC 17065:2012). The D-CoC QA is intended to be used for the assessment of:

- conformity to type based on quality assurance of the production process (module D),
- quality assurance of the production process (module D1),
- conformity to EU-type based on the product quality assurance (module E),
- quality assurance of final product inspection and testing (module E1),
- conformity based on full quality assurance (module H), and
- conformity based on full quality assurance plus design examination (module H1).

The D-CoC QA comprises a set of elements, attributes, data types, and constraints for the representation and exchange of conformity-relevant information generated in different systems and by different actors. This document provides an overview of the data structure part which comprises the certificate content specific for a quality assurance.

1.1 Motivation

Legal metrology deals with all measurements in the economic, health, and police monitoring which are regulated by laws and has, therefore, a high significance for the European industry and customer rights. However, in a more and more digital world it is lagging far behind. The development of digital, machine-readable formats for documents such as certificates of conformity is a corner stone for the digitalisation of legal metrology.

Digital certificates of conformity can be used for a harmonised data exchange between conformity assessment bodies, market surveillance, and manufacturers. They also enhance findability and comparability of information. A specific use case is the harmonisation of certificate databases among notified bodies.

1.2 Scope

The D-CoC QA data structure focuses on quality assurance evaluation as part of product certification of legally regulated measuring instruments according to Directive 2014/32/EU (MID) and non-automatic weighing instruments according to Directive 2014/31/EU (NAWID). It can also be used outside of legal metrology as well.

D-CoC document family: This document is part of the D-CoC document family, which comprises the certificate structure of different certification systems and schemas. The following documents contain further separate data structures for the contents of the certificate specific to the respective certification system/schema:

- D-CoC is specific to the part of the certificate with **administrative content**;
- D-CoC M B is specific for the conformity assessment of legally regulated measuring instruments based on **type examination**;
- D-CoC M F is specific for the conformity assessment of legally regulated measuring instruments with the type based on **product verification**.

1.3 Status

In May 2021, a project group "Digital certificates of conformity in Metrology" has been established at Notified Bodies in Legal Metrology NoBoMet to develop data structures for certificates in legal metrology (NAWID and MID) for the conformity assessment module B (type examination), D (quality assurance), and F (product verification). The general certification data has been published already as D-CoC and it was decided during the work to extend the work on all modules related to quality assurance evaluation (D, D1, E, E1, H and H1).

1.4 Funding Note

Part of the work on the digital certificate of conformity has been performed within the project framework QI-Digital in the pilot project "Reliable hydrogen filling stations".

2. The Principle of Defining the Data Structure

2.1 Prefixes

The prefix is **dcocQA**. Additionally, the following prefix is used for elements imported from the other data structure: **dcoc** from the Digital Certificate of Conformity (D-CoC).

2.2 Modularisation and Data Structure

This document focuses on the content part of certificate of conformity related to quality assurance and must be used in combination with the administrative content part of the D-CoC.

The overview of the elements and their attributes can be represented graphically as follows:

Figure 1 - General overview of the elements describing the certificate content specific to quality assurance

The data structure contains a number of so-called **universal elements**. These belong to several superordinate elements and data types and are therefore defined as generally as possible. The universal elements are as following:

- dcoc:name, that occurs with dcocQA:manufacturingLocationContact, dcocQA:productionSite, and dcoc:byteData;
- dcoc:description, that occurs with dcoc:descriptionData and dcoc:byteData.

2.3 Characterisation of the Elements and Attributes

2.3.1 Structure of the Specification

The D-CoC QA elements, data types and attributes presented here are documented using the following approach:

MACHINE INTERPRETABLE DESIGNATION: prefix:nameElement or prefix:nameDataType or prefix:nameAttribute;

DEFINITION: The representation of the scope of meaning of the D-CoC QA element, data type, and attribute in natural language;

LABEL This is a human-readable label that can be displayed to the user, e.g. when visualising

the digital certificate.

EXAMPLE This is an example of element content.

NOTE A note contains additional information regarding the use of the D-CoC QA element, data

type and attribute.

CARDINALITY Cardinality characterises elements and data types in terms of two properties: (1) the

degree of mandatory use and (2) the number of occurrences in the digital certificate.

(See here in 2.3.2 Cardinality).

DATA TYPE In the data structure, two main categories of data types are distinguished: simple and

complex. Simple data types are expressed by their common names. The following simple data types are used: **string** as a set of any characters composed, **ID** as a unique identifier, **IDREF** as a reference to a unique identifier, **date** as a Gregorian calendar date, and **binary** as a binary content. In use, these can be adopted in most languages, e.g. in XML as xs:string, xs:ID, xs:IDREF, xs:date, and xs:hexBinary. Complex data types are internally developed data types that cover the requirements of digital certification, e.g. in the representation of the contact data of relevant persons and

organisations, of the text-based certification-relevant content, of the encoded files, and of

the language-related information.

ATTRIBUTE See here in 2.3.3 Attribution.

FIGURE This is a graphic representation of elements, their subelements and mandatory

attributes. Figures do not claim to be exhaustive.

2.3.2 Cardinality

The cardinality is expressed in the data structure as follows:

• The cardinality value 1 ... ∞ stands for a mandatory element and data type that can be entered more than once:

- The cardinality value **1** ... **1** stands for a mandatory element and data type that can be entered exactly once in the certificate;
- The cardinality value **0** ... **1** represents an optional element and data type that can be entered at most once;
- The cardinality value **0** ... ∞ represents an optional element and data type that can be entered more than once.

2.3.3 Attribution

In the data structure, attributes are divided into mandatory attributes and optional attributes.

2.4 Overview of Elements, Attributes and Data Types

2.4.1 Elements

dcocQA:categoryOfInstrumentdcocQA:categoriesOfInstrumentsdcocQA:mainCategorydcocQA:manufacturingLocationdcocQA:manufacturingLocationContactdcocQA:manufacturingLocations

dcocQA:productionSitedcocQA:productionSitesdcocQA:productRefdcocQA:qualityAssurance

dcocQA:subCategory

2.4.2 Attributes

dcoc:id dcoc:lang dcoc:schemaVersion

2.4.3 Simple Data Types

binary ID IDREF string

2.4.4 Complex Data Types

dcoc:byteData dcoc:contact dcoc:text

2.4.5 Subelements of Complex Data Types

dcoc:citydcoc:contentdcoc:countryCodedcoc:datadcoc:descriptiondcoc:descriptionData

 dcoc:eMail
 dcoc:fileName
 dcoc:further

 dcoc:location
 dcoc:mimeType
 dcoc:name

 dcoc:phone
 dcoc:postCode

 dcoc:postOfficeBox
 dcoc:state
 dcoc:street

dcoc:streetNo

3 Specification of the Data Structure

3.1 dcocQA:qualityAssurance

content part of the certificate specific to the quality assurance evaluation

LABEL quality assurance

CARDINALITY 1 ... 1

MANDATORY ATTRIBUTE schemaVersion

Figure 2 - The subdivision of the element dcocQA:qualityAssurance into the individual subelements

3.1.1 dcocQA:manufacturingLocations

facilities that carry out manufacturing, handling, storage, and/or other activities (for example, routine tests), up to and including releasing to the market the product bearing the CE mark

[SOURCE: IECEx 02, modified - The original term and the definition are used in the plural to describe more than one manufacturing location. The expression "IECEx number" is exchanged by "CE mark". Note 1 is not considered.]

LABEL manufacturing locations

CARDINALITY 1...1

Figure 3 - The subdivision of the element dcocQA:manufacturingLocations into the individual subelements

3.1.1.1 dcocQA:manufacturingLocation

a facility that carries out manufacturing, handling, storage, and/or other activities (for example, routine tests), up to and including releasing to the market the product bearing the CE mark

[SOURCE: IECEx 02, 3.18, modified - The expression "IECEx number" is exchanged by "CE mark". Note 1 is not considered.]

LABEL manufacturing location

CARDINALITY 1...∞

Figure 4 - The subdivision of the element dcocQA:manufacturingLocation into the individual subelements

3.1.1.1.1 dcocQA:manufacturingLocationContact

contact data of the manufacturing location

LABEL manufacturing location contact

CARDINALITY 1 ... 1

DATA TYPE contact

3.1.1.1.2 dcocQA:productRef

reference to the certified product

LABEL product reference

CARDINALITY 0 ... ∞

DATA TYPE IDREF

3.1.1.1.3 dcocQA:productionSites

facilities that carry out manufacturing, handling, storage, and/or storage of the product, in part, under the control of a manufacturing location

[SOURCE: IECEx 02, modified - The original term and the definition are used in the plural to describe more than one production site. Notes 1 - 2 are not considered.]

LABEL production sites

CARDINALITY 0 ... 1

Figure 5 - The subdivision of the element dcocQA:productionSites into the individual subelements

3.1.1.1.3.1 dcocQA:productionSite

a facility that carries out manufacturing, handling, storage, and/or storage of the product, in part, under the control of a manufacturing location

[SOURCE: IECEx 02, 3.19, modified - Notes 1 - 2 are not considered.]

LABEL production site

CARDINALITY 1 ... ∞

DATA TYPE contact

3.1.2 dcocQA:categoriesOfInstruments

categories of the certified instruments

LABEL categories of instruments

CARDINALITY 1...1

Figure 6 - The subdivision of the element dcocQA:categoriesOfInstruments into the individual subelements

3.1.2.1 dcocQA:categoryOfInstrument

category of one certified instrument

LABEL category of instrument

CARDINALITY 1 ... ∞ MANDATORY ATTRIBUTE id

Figure 7 - The subdivision of the element dcocQA:categoryOfInstrument into the individual subelements

3.1.2.1.1 dcocQA:mainCategory

main category of the certified instrument

LABEL main category of instrument

CARDINALITY 1 ... 1
DATA TYPE text

3.1.2.1.2 dcocQA:subCategory

sub category of the certified instrument

LABEL sub category of instrument

CARDINALITY 0 ... 1
DATA TYPE text

3.2 Attributes

3.2.1 dcoc:schemaVersion

Version of the schema

LABEL schema version

EXAMPLE 0.4.0
DATA TYPE string

RESTRICTION ON VALUE The value is expressed as digit.digit.digit.

3.2.2 dcoc:id

identification number

LABEL ID

EXAMPLE software1

DATA TYPE ID

3.2.3 dcoc:lang

language used

LABEL language
DATA TYPE string

RESTRICTION ON VALUE code according to ISO 639

3.3 Complex Data Types

3.3.1 dcoc:text

indication of any content in text form including used language

NOTE The element name and cardinality are given at the point where it is used.

OPTIONAL ATTRIBUTE id

Figure 8 - The subdivision of the data type dcoc:text into the individual subelements

3.3.1.1 dcoc:content

text content based on language indication

LABEL content

CARDINALITY 1 ... ∞

DATA TYPE string

OPTIONAL ATTRIBUTE 1 id

OPTIONAL ATTRIBUTE 2 lang

3.3.2 dcoc:contact

contact data on a person or organisation

NOTE The element name and cardinality are determined at the place of use of

the data structure.

OPTIONAL ATTRIBUTE id

Figure 9 - The subdivision of the data type dcoc:contact into the individual subelements

3.3.2.1 dcoc:name

name of the contact person or organization

LABEL name

EXAMPLE 1 P. Sherman Meter GmbH

EXAMPLE 2 ਪੀ ਸ਼ਰਮਨ ਮੀਟਰ ਲਿਮਿਟੇਡ

EXAMPLE 3 Peter Hase

CARDINALITY 1 ... 1
DATA TYPE text

3.3.2.2 dcoc:eMail

email address of the contact person or organization

LABEL email CARDINALITY 0 ... 1 DATA TYPE string

3.3.2.3 dcoc:phone

phone number of the contact person or organization

LABEL phone number

CARDINALITY 0 ... 1
DATA TYPE string

3.3.2.4 dcoc:location

location data of the contact person or organization

LABEL location CARDINALITY 0 ... 1

Figure 10 - The subdivision of the data type **dcoc:location** into the individual subelements

3.3.2.4.1 dcoc:city

city name

LABEL city

EXAMPLE Sydney

CARDINALITY 0 ... ∞

DATA TYPE string

3.3.2.4.2 dcoc:countryCode

country code

LABEL country EXAMPLE AUS CARDINALITY $0 \dots \infty$ DATA TYPE string

RESTRICTION ON VALUE The entry is made using the country codes according to ISO 3166-1.

3.3.2.4.3 dcoc:postCode

post code

LABEL postcode EXAMPLE 2124 CARDINALITY $0 \dots \infty$ DATA TYPE string

3.3.2.4.4 dcoc:postOfficeBox

post office box number of the contact person or organisation

LABEL P.O. box

EXAMPLE P.O. Box 1234

CARDINALITY 0 ... ∞

DATA TYPE string

3.3.2.4.5 dcoc:state

name of the federal state, region, or substate

LABEL state

EXAMPLE Queensland

 $\begin{array}{ll} \text{CARDINALITY} & 0 \dots \infty \\ \\ \text{DATA TYPE} & \text{string} \end{array}$

3.3.2.4.6 dcoc:street

street name of the contact person or organisation

LABEL street

EXAMPLE Wallaby Way

CARDINALITY 0 ... ∞

DATA TYPE string

3.3.2.4.7 dcoc:streetNo

street number of the contact person or organisation

LABEL street number

EXAMPLE 42a

CARDINALITY 0 ... ∞

DATA TYPE string

3.3.2.4.8 dcoc:further

additional information on the location

LABEL further EXAMPLE o.V.i.A CARDINALITY $0... \infty$ DATA TYPE string

3.3.2.5 dcoc:descriptionData

additional files on the contact person or organisation

LABEL additional file

EXAMPLE Logo

CARDINALITY 0 ... 1

DATA TYPE byteData

3.3.3 dcoc:byteData

encoded file

NOTE The element name and cardinality are given at the point where it is used.

OPTIONAL ATTRIBUTE id

Figure 11 - The subdivision of the data type dcoc:byteData into the individual subelements

3.3.3.1 dcoc:name

designation or proper name of the corresponding content element

LABEL name

EXAMPLE seal plan

CARDINALITY 1 ... 1

DATA TYPE text

3.3.3.2 dcoc:description

textual representation of the corresponding content element

LABEL description

CARDINALITY 0 ... 1
DATA TYPE text

3.3.3.3 dcoc:fileName

designation of the encoded file

LABEL file name

EXAMPLE picture.jpg

CARDINALITY 1 ... 1

DATA TYPE string

3.3.3.4 dcoc:mimeType

underlying file type

LABEL mime type

NOTE Mime type is according to specification *Multipurpose Internet Mail Extensions*.

EXAMPLE base64
CARDINALITY 1 ... 1
DATA TYPE string

3.3.3.5 dcoc:data

encoded data

LABEL file
CARDINALITY 1 ... 1
DATA TYPE binary

4. References

- 1. International Electrotechnical Commission (IEC) (2022): IECEx 02: IEC System for Certification to Standards Relating to Equipment for Use in Explosive Atmospheres (IECEx System). Edition 8.1.
- 2. ISO 3166-1:2020: Codes for the representation of names of countries and their subdivisions Part 1: Country code.
- 3. ISO 639-1:2002: Codes for the representation of names of languages Part 1: Alpha-2 code.

5. Version control

Issue Year	Significant changes
2025	Document first issued